洛谷 P1233 木棍加工】的更多相关文章

P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间为1分钟: 如果刚处理完长度为L,宽度为W的棍子,那么如果下一个棍子长度为Li,宽度为Wi,并且满足L>=Li,W>=Wi,这个棍子就不需要准备时间,否则需要1分钟的准备时间: 计算处理完n根棍子所需要的最短准备时间.比如,你有5根棍子,长度和宽度分别为(4, 9),(5, 2),(2, 1),(…
题目:https://www.luogu.org/problemnew/show/P1233 题意: 有n根木棍,每根木棍有长度和宽度. 现在要求按某种顺序加工木棍,如果前一根木棍的长度和宽度都大于现在这根,那加工这一根就不需要准备时间,否则需要1分钟准备时间. 问最少的准备时间. 思路: 现在题目要同时维护两个单调不升序列的数目.对于一个属性显然可以通过排序保证他们是单调不升的. 只需在排好序之后求另一个属性的单调不升序列的个数. 这里需要知道Dilworth定理: 偏序集能划分成的最少的全序…
题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间为1分钟: 如果刚处理完长度为L,宽度为W的棍子,那么如果下一个棍子长度为Li,宽度为Wi,并且满足L>=Li,W>=Wi,这个棍子就不需要准备时间,否则需要1分钟的准备时间: 计算处理完n根棍子所需要的最短准备时间.比如,你有5根棍子,长度和宽度分别为(4, 9),(5, 2),(2, 1),(3, 5),(1, 4…
主要思路: 这道题一眼看过去就可以贪心.. 首先可以按L排序.. 显然排序之后我们就可以抛开L不管了.. 然后就可以愉快的贪心了.. 细节: 这道题可以看成用 最少的合法序列(详见原题) 装下所有木棍.. 可以考虑用一种数据结构来记录序列最末端的木棍.. 可以考虑先按上述思路排序, 然后每次加木棍时加在第一个大于等于当前木棍宽度的木棍的序列末端, 然后顶替掉找到的这一位. 如果找不到这样的木棍就再开一个序列.. (本题贪心的核心思想) 然而我懒得多动手,就用了STL的set来维护每个序列的末端木…
突然发现自己把原来学的LIS都忘完了,正好碰见这一道题.|-_-| \(LIS\),也就是最长上升子序列,也就是序列中元素严格单调递增,这个东西有\(n^{2}\)和\(nlog_{2}n\)两种算法,其原理我就不多说了. 注意,本题的一个要点,就是不下降连续子序列的个数等于最长上升子序列的长度. 证明?由Dilworth定理可得证. 什么是Dilworth定理?它的定义是在:有穷偏序集中,任何反链最大元素数目等于任何将集合到链的划分中链的最小数目.一个关于无限偏序集的理论指出,在此种情况下,一…
题面 Dilworth定理:在数学理论中的序理论与组合数学中,Dilworth定理根据序列划分的最小数量的链描述了任何有限偏序集的宽度. 反链是一种偏序集,其任意两个元素不可比:而链则是一种任意两个元素可比的偏序集.Dilworth定理说明,存在一个反链A与一个将序列划分为链族P的划分,使得划分中链的数量等于集合A的基数.当存在这种情况时,对任何至多能包含来自P中每一个成员一个元素的反链,A一定是此序列中的最大反链.同样地,对于任何最少包含A中的每一个元素的一个链的划分,P也一定是序列可以划分出…
P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间为1分钟: 如果刚处理完长度为L,宽度为W的棍子,那么如果下一个棍子长度为Li,宽度为Wi,并且满足L>=Li,W>=Wi,这个棍子就不需要准备时间,否则需要1分钟的准备时间: 计算处理完n根棍子所需要的最短准备时间.比如,你有5根棍子,长度和宽度分别为(4, 9),(5, 2),(2, 1),(…
P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间为1分钟: 如果刚处理完长度为L,宽度为W的棍子,那么如果下一个棍子长度为Li,宽度为Wi,并且满足L>=Li,W>=Wi,这个棍子就不需要准备时间,否则需要1分钟的准备时间: 计算处理完n根棍子所需要的最短准备时间.比如,你有5根棍子,长度和宽度分别为(4, 9),(5, 2),(2, 1),(…
这个题被算法标签标为DP,但其实可能只是用dp求子序列,,(n方) 给出l与w,只要是l与w同时满足小于一个l与w,那么这个木棍不需要时间,反之需要1.看到这个题,首先想到了二维背包,然后发现没有最大的容量,放弃.然后又联想到了活动选择,来一个结构体排序和贪心,但是发现贪心其实具有后效性放弃.然后看了题解,发现最长不下降子序列是正解!碰巧昨天学习了中科大少年班lhw大佬发在群里的..序列,所以便去思考了.先用结构体存下l与w,然后排序l.再用nlogn的算法去求解最长不下降子序列,长度则代表时间…
题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间为1分钟: 如果刚处理完长度为L,宽度为W的棍子,那么如果下一个棍子长度为Li,宽度为Wi,并且满足L>=Li,W>=Wi,这个棍子就不需要准备时间,否则需要1分钟的准备时间: 计算处理完n根棍子所需要的最短准备时间.比如,你有5根棍子,长度和宽度分别为(4, 9),(5, 2),(2, 1),(3, 5),(1, 4…