python_MachineLearning_感知机PLA】的更多相关文章

感知机:线性二类分类器(linear binary classifier)   感知机(perceptron)是二类分类的线性模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值.感知机对应于输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于判别模型.感知机学习旨在求出将训练数据进行线性划分的分离超平面,为此,导入基于误差分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型.     import numpy as np import matplotlib.p…
一.感知机(Perception) 1.1 原理: 感知机是二分类的线性模型,其输入是实例的特征向量,输出的是事例的类别,分别是+1和-1,属于判别模型. 假设训练数据集是线性可分的,感知机学习的目标是求得一个能够将训练数据集正实例点和负实例点完全正确分开的分离超平面.如果是非线性可分的数据,则最后无法获得超平面. 1.2 感知机模型 感知机从输入空间到输出空间的模型如下: 1.3 求解 思想:错误驱动 损失函数:期望使错误分类的所有样本,到超平面的距离之和最小 (其中M集合是误分类点的集合)…
转自:https://blog.csdn.net/u010626937/article/details/72896144#commentBox 1.实现原始形式 import numpy as np import matplotlib.pyplot as plt #1.创建数据集 def createdata(): samples=np.array([[3,-3],[4,-3],[1,1],[1,2]])#4行2列 labels=[-1,-1,1,1] return samples,labels…
Python实现PLA(感知机) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=>end op1=>operation: 读入数据 op2=>operation: 格式化数据 cond=>condition: 权重是否不变 op3=>operation: 更新权重 op4=>operation: 输出结果 st->op1->op2->cond cond…
Perception Learning Algorithm, PLA 1.感知机 感知机是一种线性分类模型,属于判别模型. 感知机模型给出了由输入空间到输出空间的映射: f(X) = sign(WTX + b) 简单来说,就是找到一个分类超平面 WTX + b =0,将数据集中的正例和反例完全分开. 2.感知机学习算法(PLA) 感知机学习算法是为了找到 W 和 b  以确定分类超平面.为了减少符号,令 W = [b, W1, W2, ..., Wn], X = [1, X1, X2, ...,…
之前在<机器学习---感知机(Machine Learning Perceptron)>一文中介绍了感知机算法的理论知识,现在让我们来实践一下. 有两个数据文件:data1和data2,分别用于PLA和Pocket Algorithm.可在以下地址下载:https://github.com/RedstoneWill/MachineLearningInAction/tree/master/Perceptron%20Linear%20Algorithm/data. 先回顾一下感知机算法: 1,初始…
目录 1. 引言 2. 载入库和数据处理 3. 感知机的原始形式 4. 感知机的对偶形式 5. 多分类情况-one vs. rest 6. 多分类情况-one vs. one 7. sklearn实现 8. 感知机算法的作图 1. 引言 在这里主要实现感知机算法(PLA)的以下几种情况: PLA算法的原始形式(二分类) PLA算法的对偶形式(二分类) PLA算法的作图(二维) PLA算法的多分类情况(包括one vs. rest 和one vs. one 两种情况) PLA算法的sklearn实…
感知机问题学习算法引入:信用卡问题 根据已知数据(不同标准的人的信用评级)训练后得出一个能不能给新客户发放信用卡的评定结果 解决该问题的核心思想扔为之前所讲到的梯度下降算法,对于更多条件的类似问题,首先选取一个超平面w0,b0,然后用梯度下降算法不断极小化目标函数,使得此过程中随机一个有误分类点的梯度下降. 过程通过随机选取一个分类点,(xi,yi)依据该分类点对w b进行更新. 得出的这个函数f(x) = sign(w·x+b)就是感知机模型. 它的计目的就是找到一条直线,能够把正向数据与负向…
for batch&supervised binary classfication,g≈f <=> Eout(g)≥0 achieved through Eout(g)≈Ein(g) and Ein(g)≈0 其中Ein是某一个备选函数h在数据D上犯错误的比例,在整个数据集上犯错误的比例为Eout 1.Perceptron Hypothesis Set 假设训数据集市线性可分的,感知机学习是目标就是求得一个能够将训练集正实例点和负实例点完全正确分开的分离超平面, 对于一组数据X={x1…
Perceptron - 感知机,是一种二元线性分类器,它通过对特征向量的加权求和,并把这个”和”与事先设定的门槛值(threshold)做比较,高于门槛值的输出1,低于门槛值的输出-1.其中sign 是取符号函数,括号中所包含的内容大于0时,取+1:小于0时,取-1. 对h(x)做一些数学上的简化.变成向量表示: 感知机(perceptron)是一个线性分类器(linear classifiers).sign(WTX)其实就相当于WTX=0,都表示一个超平面. PLA算法只有在满足训练样本是线…