la3890(半平面交)】的更多相关文章

蓝书半平面交例题 #include<iostream> #include<cstring> #include<cmath> #include<cstdio> #include<algorithm> using namespace std; ; ; int n; struct vec{ double x,y; vec(,):x(x),y(y){} vec operator-(vec& a){ return vec(x-a.x,y-a.y);…
按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中心平移就是向向量左手边平移,求出长度为r方向指向向量左手边的向量p,a+p指向b+p就是平移后的向量. 半平面交就是对于每个半平面ax+by+c>0,将当前数组里的点(一开始是所有点)带入,如果满足条件,那么保留该点,否则,先看i-1号点是否满足条件,如果满足,那么将i-1和i点所在直线和直线ax+…
2618: [Cqoi2006]凸多边形 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 959  Solved: 489[Submit][Status][Discuss] Description 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图:   则相交部分的面积为5.233. Input 第一行有一个整数n,表示凸多边形的个数,以下依次描述各个多边形.第i个多边形的第一行包含一个整数mi,表示多边形的边数,以…
检验半平面交的板子. #include <stdio.h> #include <bits/stdc++.h> using namespace std; #define gg puts("gg"); #define ll long long ); ; int dcmp(double x){ ; ? : -; } struct Point{ double x, y; Point(, ):x(x), y(y){} Point operator +(const Poin…
题目传送门 题意:凸多边形的小岛在海里,问岛上的点到海最远的距离. 分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点. /************************************************ * Author :Running_Time * Created Time :2015/11/10 星期二 14:16:17 * File Name :LA_3890.cpp ********************…
链接:http://poj.org/problem?id=3335     //大牛们常说的测模板题 ---------------------------------------------------------------- Rotating Scoreboard Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 5158   Accepted: 2061 Description This year, ACM/ICPC…
链接 求凸多边形内一点距离边最远. 做法:二分+半平面交判定. 二分距离,每次让每条边向内推进d,用半平面交判定一下是否有核. 本想自己写一个向内推进..仔细一看发现自己的平面交模板上自带.. #include <iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<stdlib.h> #include<vector> #include<…
链接 半平面交的模板题,判断有没有核.: 注意一下最后的核可能为一条线,面积也是为0的,但却是有的. #include<iostream> #include <stdio.h> #include <math.h> #define eps 1e-8 using namespace std; ; int m; double r; int cCnt,curCnt;//此时cCnt为最终切割得到的多边形的顶点数.暂存顶点个数 struct point { double x,y;…
摘自http://blog.csdn.net/accry/article/details/6070621 首先解决问题:什么是半平面? 顾名思义,半平面就是指平面的一半,我们知道,一条直线可以将平面分为两个部分,那么这两个部分就叫做两个半平面. 然后,半平面怎么表示呢? 二维坐标系下,直线可以表示为ax + by + c = 0,那么两个半平面则可以表示为ax + by + c >= 0 和ax + by + c < 0,这就是半平面的表示方法. 还有,半平面的交是神马玩意? 其实就是一个方程…
题意就是给你很多个半平面,求半平面交出来的凸包的面积. 半平面交有O(n^2)的算法,就是每次用一个新的半平面去切已有的凸包,更新,这个写起来感觉也不是特别好写. 另外一个O(nlogn)的算法是将半平面交极角排序,然后用一个双端队列去维护半平面交,每次加入一个半平面,根据之前的交点的位置退掉半平面,方法跟凸包非常相像,(不同的是加入队列的时候还要考虑加入半平面会使队首的平面变得无效,因为会有两个while.最后还要考虑最后加入的半平面绕了一圈之后使得队首的半平面变得无效.)其实这里有点不太懂后…