Luogu P3227 [HNOI2013]切糕】的更多相关文章

首先推荐一个写的很好的题解,个人水平有限只能写流水账,还请见谅. 经典的最小割模型,很多人都说这个题是水题,但我还是被卡了=_= 技巧:加边表示限制 在没有距离\(<=d\)的限制时候,我们对每个竖轴连一条完整的边跑最小割即可(效果和取\(min\)是一样的).但是现在需要加入这个限制,我们就要考虑加边. 原条件:\(|x - y| <= d\) 转化为:\(x - y <= d\) 且 \(y - x <= d\) 我们考虑对每一个不等式单独处理,实际上可以转化为: 对于每一个\…
%%ZZKdalao上课讲的题目,才知道网络流的这种玄学建模 我们先想一想,如果没有D的限制,那么想当于再每一根纵轴上选一个权值最小的点再加起来 我们对应在网络流上就是每一根纵轴上的点向它下方的点用权值当边值进行连边,然后要割掉一些边,代价最小就是求最小割 然后我们考虑限制,就是如果割了某一根数轴上高度为x的点,那么所有与它相邻的纵轴都只能割高度为[x-d,x+d]的点 这个时候我们就要知道一个常用技巧:在求最小割时,我们可以把那些无法割去的边边权设为INF 因此我们在建边时,由纵轴上一度为x的…
题目描述 经过千辛万苦小 A 得到了一块切糕,切糕的形状是长方体,小 A 打算拦腰将切糕切成两半分给小 B.出于美观考虑,小 A 希望切面能尽量光滑且和谐.于是她找到你,希望你能帮她找出最好的切割方案. 出于简便考虑,我们将切糕视作一个长 P.宽 Q.高 R 的长方体点阵.我们将位于第 z层中第 x 行.第 y 列上(1≤x≤P, 1≤y≤Q, 1≤z≤R)的点称为(x,y,z),它有一个非负的不和谐值 v(x,y,z).一个合法的切面满足以下两个条件: 与每个纵轴(一共有 P*Q 个纵轴)有且…
题目大意:有一个$n\times m$的切糕,每一个位置的高度可以在$[1,k]$之间,每个高度有一个代价,要求四联通的两个格子之间高度最多相差$D$,问可行的最小代价.$n,m,k,D\leqslant 40$ 题解:网络流,不考虑相差为$D$的条件时,可以给每个位置建一个点,源点连向高度为$1$的点容量为$\infty$,高度为$i$的点连向这个位置高度为$i+1$的点,容量为代价,高度为$k$的连向汇点,容量为代价.跑最小割. 考虑相差为$D$的条件,可以对于相邻的两个点$A,B$,连接$…
题解 Dinic求最小割 题目其实就是求最小的代价使得每个纵轴被分成两部分 最小割!!! 我们把每个点抽象成一条边,一个纵轴就是一条\(S-T\)的路径 但是题目要求\(|f(x,y)-f(x',y')| ≤D\) 不能直接跑最小割 考虑如何限制 首先,\(|f(x,y)-f(x',y')| ≤D\)是相互的 所以只要考虑 \(f(x,y)-f(x',y')\leq D\) 限制想一想看代码就明白了 代码就很简洁了 Code #include<bits/stdc++.h> #define LL…
正解:网络流 解题报告: 传送门! 日常看不懂题系列,,,$QAQ$ 所以先放下题目大意趴$QwQ$,就说有个$p\cdot q$的矩阵,每个位置可以填一个$[1,R]$范围内的整数$a_{i,j}$,要求相邻格子之间差不超过$D$.求$\sum v_{i,j,a_{i,j}}$的$min$ 昂,先考虑如果没有$D$这个限制网络流怎么做鸭$QwQ$.就一个,比较显然的最小割,对每个位置$(i,j)$开一行点连起来,第$k$个点和第$k+1$个点之间的流量为$v_{i,j,k+1}$,切开就表示这…
bzoj3144 [HNOI2013]切糕(最小割) bzoj Luogu 题面描述见上 题解时间 一开始我真就把这玩意所说的切面当成了平面来做的 事实上只是说相邻的切点高度差都不超过 $ d $ 对于一条 $ z $ 轴方向的线,把原题的点看成边,每个原题的点两端看成两个点就好(就是说一条线上有 $ r+1 $ 个点 $ r $ 条边),底端每一个点有一条由 $ S $ 连向它的不能断开( $ inf $ )的边,顶端每个点同理连向 $ T $ 之后考虑处理相邻两点之间高度差不超过 $ d $…
3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1495  Solved: 819[Submit][Status][Discuss] Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R). 100%的数据满足P,Q…
3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 681  Solved: 375[Submit][Status] Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R). 100%的数据满足P,Q,R≤40,0≤D≤…
BZOJ_3144_[Hnoi2013]切糕_最小割 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R). 100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000. Output 仅包含一个整数,表示在合法基础上最小的总不和谐值. Sample Input 2 2 2…