SPFA算法 O(kE)】的更多相关文章

SPFA算法O(kE) 主要思想是:     初始时将起点加入队列.每次从队列中取出一个元素,并对所有与它相邻的点进行修改,若某个相邻的点修改成功,则将其入队.直到队列为空时算法结束.     这个算法,简单的说就是队列优化的bellman-ford,利用了每个点不会更新次数太多的特点发明的此算法. SPFA 在形式上和广度优先搜索非常类似,不同的是广度优先搜索中一个点出了队列就不可能重新进入队列,但是SPFA中一个点可能在出队列之后再次被放入队列,也就是说一个点修改过其它的点之后,过了一段时间…
SPFA算法O(kE) Dijkstra和Floyed是不断的试点.Dijkstra试最优点,Floyed试所有点. Bellman-Ford和SPFA是不断的试边.Bellman-Ford是盲目的试所有边,SPFA只试那些有利用价值的点的边. 两点说明: 1.因为dis[v]都为无穷大,所以可以保证每个点都进过一次队列. 2.当点有利用价值的话我们就把它丢进队列,没有的话就不丢进去,而且有些点的价值不是一次就消耗完了,所以需要被多次放入队列. 3.SPFA算法虽然是Bellman-Ford的优…
主要思想是:     初始时将起点加入队列.每次从队列中取出一个元素,并对所有与它相邻的点进行修改,若某个相邻的点修改成功,则将其入队.直到队列为空时算法结束.     这个算法,简单的说就是队列优化的bellman-ford,利用了每个点不会更新次数太多的特点发明的此算法. SPFA 在形式上和广度优先搜索非常类似,不同的是广度优先搜索中一个点出了队列就不可能重新进入队列,但是SPFA中一个点可能在出队列之后再次被放入队列,也就是说一个点修改过其它的点之后,过了一段时间可能会获得更短的路径,于…
Dijkstra算法: 解决带非负权重图的单元最短路径问题.时间复杂度为O(V*V+E) 算法精髓:维持一组节点集合S,从源节点到该集合中的点的最短路径已被找到,算法重复从剩余的节点集V-S中选择最短路径估计最小的节点u,对u的所有连边进行松弛操作.即对j=1~n,dis[j] = min(dis[j],dis[k]+map[k][j]). 常规代码如下: void Dijkstra() { int i,j,k,mini; memset(vis,,sizeof(vis)); ;i<=n;i++)…
SPFA算法 一.算法简介 SPFA(Shortest Path Faster Algorithm)算法是求单源最短路径的一种算法,它是Bellman-ford的队列优化,它是一种十分高效的最短路算法. 很多时候,给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了.SPFA的复杂度大约是O(kE),k是每个点的平均进队次数(一般的,k是一个常数,在稀疏图中小于2). 但是,SPFA算法稳定性较差,在稠密图中S…
适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一定存在.当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重点. 算法思想:我们用数组d记录每个结点的最短路径估计值,用邻接表来存储图G.我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计…
Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题.Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好好思考),而Dijkstra算法只能处理边权非负的问题,因此 Bellman-Ford算法的适用面要广泛一些.但是,原始的Bellman-Ford算法时间复杂度为O(VE),比Dijkstra算法的时间复杂度高,所以常常被众多的大学算法教科书所忽略,就连经典的<算法导论>也只介绍了基本的Bellm…
SPAF算法 求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm,该算法是西南交通大学段凡丁于1994年发表的. 它可以在O(kE)的时间复杂度内求出源点到其他所有点的最短路径. 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2,可以处理负边,但无法处理带负环的图(负环和负边不是一个概念). SPFA的实现甚至比Dijkstra或者Bellman_Ford还要简单. SPFA算法过程: 我们记源点为S,由源点到达点i的“当前最短路径”为D[i…
适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便 派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一定存在.当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重 点. 算法思想:我们用数组d记录每个结点的最短路径估计值,用邻接表来存储图G.我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的 结点,优化时每次取出队首结点u,并且用u点当前的最短路…
今天所说的就是常用的解决最短路径问题最后一个算法,这个算法同样是求连通图中单源点到其他结点的最短路径,功能和Bellman-Ford算法大致相同,可以求有负权的边的图,但不能出现负回路.但是SPFA算法的时间复杂度是O(kE),k是常数,平均值为2,E是边数.我们可以看到SPFA算法的时间复杂度远远低于Bellman-Ford算法,因此常常选择此算法而不是Bellman算法(虽然其复杂度没有被严格的数学证明). 简单的说SPFA是将Bellman-Ford算法结合了队列的实现,从而减少了很多冗余…