2-KNN(K最邻近算法)】的更多相关文章

上篇文章中提到了使用pillow对手写文字进行预处理,本文介绍如何使用kNN算法对文字进行识别. 基本概念 k最邻近算法(k-Nearest Neighbor, KNN),是机器学习分类算法中最简单的一类.假设一个样本空间被分为几类,然后给定一个待分类的特征数据,通过计算距离该数据的最近的k个样本来判断这个数据属于哪一类.如果距离待分类属性最近的k个类大多数都属于某一个特定的类,那么这个待分类的数据也就属于这个类.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来…
加权kNN 上篇文章中提到为每个点的距离增加一个权重,使得距离近的点可以得到更大的权重,在此描述如何加权. 反函数 该方法最简单的形式是返回距离的倒数,比如距离d,权重1/d.有时候,完全一样或非常接近的商品权重会很大甚至无穷大.基于这样的原因,在距离求倒数时,在距离上加一个常量: weight = 1 / (distance + const) 这种方法的潜在问题是,它为近邻分配很大的权重,稍远一点的会衰减的很快.虽然这种情况是我们希望的,但有时候也会使算法对噪声数据变得更加敏感. 高斯函数 高…
KNN基本思想: 1.事先存在已经分类好的样本数据(如分别在A类.B类.C类等) 2.计算待分类的数据(叫做新数据)与所有样本数据的距离 3.选择K个与新数据距离最近的的样本,并统计这K个样本所属的分类(如K=10,其中有3个为A,3个为B,4个为C) 4.将新数据归属于这K个样本中出现频率最高的那个类(则新数据可分为C类) **************************************************************************************…
1.文件5.0,3.5,1.6,0.6,apple5.1,3.8,1.9,0.4,apple4.8,3.0,1.4,0.3,apple5.1,3.8,1.6,0.2,apple4.6,3.2,1.4,0.2,apple5.3,3.7,1.5,0.2,apple5.0,3.3,1.4,0.2,apple7.0,3.2,4.7,1.4,orange6.4,3.2,4.5,1.5,orange6.9,3.1,4.9,1.5,orange5.5,2.3,4.0,1.3,orange6.5,2.8,4.6…
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_blobs from sklearn.neighbors import KNeighborsRegressor from sklearn.datasets import make_regression from sklearn.datasets import load_wine from sklearn.model_select…
KNN分类算法,是理论上比较成熟的方法,也是最简单的机器学习算法之一. 该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. 一个对于KNN算法解释最清楚的图如下所示: 蓝方块和红三角均是已有分类数据,当前的任务是将绿色圆块进行分类判断,判断是属于蓝方块或者红三角. 当然这里的分类还跟K值…
Python实现kNN(k邻近算法) 运行环境 Pyhton3 numpy科学计算模块 计算过程 st=>start: 开始 op1=>operation: 读入数据 op2=>operation: 格式化数据 op3=>operation: 计算测试文本到全部训练文本的距离 op4=>operation: 找出最优的k个距离 op5=>operation: 归一化k个距离 e=>end st->op1->op2->op3->op4->…
一 k近邻算法原理 k近邻算法是一种基本分类和回归方法. 原理:K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实例分类到这个类中. 如上图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据.这也就是我们的目的,来了一个新的数据点,我要得到它的类别是什么?好的,下面我们根据k近邻的思想来给绿色圆点进行分类. 如果K=3,绿色圆点的最邻近的3…
k邻近算法的伪代码: 对未知类别属性的数据集中的每个点一次执行以下操作: (1)计算已知类别数据集中的点与当前点之间的距离: (2)按照距离递增次序排列 (3)选取与当前点距离最小的k个点 (4)确定前k个点所在类别的出现频率 (5)返回前k个点出现频率最好的类别作为当前点的预测分类 python函数实现 ''' Created on Sep 16, 2010 kNN: k Nearest Neighbors Input: inX: vector to compare to existing d…
 一. K邻近算法思想:存在一个样本数据集合,称为训练样本集,并且每个数据都存在标签,即我们知道样本集中每一数据(这里的数据是一组数据,可以是n维向量)与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征(向量的每个元素)与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似的的分类标签.由于样本集可以很大,我们选取前k个最相似数据,然后统计k个数据中出现频率最高的标签为新数据的标签. K邻近算法的一般流程: (1)收集数据:可以是本地数据,也可以从网页抓取. (2)准备数…