基于HOG-3D的时空描述子】的更多相关文章

作者提出一种新的基于局部描述子的行为识别算法.…
Abstract摘要本文提出了一种从图像中提取特征不变性的方法,该方法可用于在对象或场景的不同视图之间进行可靠的匹配(适用场景和任务).这些特征对图像的尺度和旋转不变性,并且在很大范围的仿射失真.3d视点的变化.噪声的增加和光照的变化中提供了鲁棒的匹配.从某种意义上说,一个单一的特征可以与来自许多图像的特征的大型数据库进行高概率的正确匹配.本文还介绍了一种利用这些特征进行目标识别的方法.识别的过程是使用快速最近邻算法将单个特征与来自已知对象的特征数据库相匹配,然后进行hough变换以识别属于单个…
介绍 在机器学习算法的世界里,特征工程是非常重要的.实际上,作为一名数据科学家,这是我最喜欢的方面之一!从现有特征中设计新特征并改进模型的性能,这就是我们进行最多实验的地方. 世界上一些顶级数据科学家依靠特征工程来提高他们在竞赛排行榜得分.我相信你甚至会在结构化数据上使用各种特征工程技术. 我们可以将此技术扩展到非结构化数据(例如图像)吗?对于计算机视觉爱好者来说,这是一个有趣的问题,我们将在本文中解决这个问题.准备好对图像数据进行特征提取形式的特征工程吧! 在本文中,我将向你介绍一种流行的图像…
本文主要介绍下opencv中怎样使用hog算法,因为在opencv中已经集成了hog这个类.其实使用起来是很简单的,从后面的代码就可以看出来.本文参考的资料为opencv自带的sample. 关于opencv中hog的源码分析,可以参考本人的另一篇博客:opencv源码解析之(6):hog源码分析 开发环境:opencv2.4.2+Qt4.8.2+ubuntu12.04+QtCreator2.5. 实验功能: 单击Open Image按钮,选择需要进行人检测的一张图片,确定后自动显示出来.该图片…
目前基于机器学习方法的行人检测的主流特征描述子之一是HOG(Histogram of Oriented Gradient, 方向梯度直方图).HOG特征是用于目标检测的特征描述子,它通过计算和统计图像局部区域的梯度方向直方图来构成特征,用这些特征描述原始图像. HOG的核心思想是所检测的局部物体外形能够被光强梯度或边缘方向的分布所描述.通过将整幅图像分割成小的连接区域(称为cells),每个cell生成一个方向梯度直方图或者cell中pixel的边缘方向,这些直方图的组合可表示出(所检测目标的目…
原地址:http://blog.csdn.net/van_ruin/article/details/9166591 .方向梯度直方图(Histogramof Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.基本知识可以参考博客:http://blog.csdn.net/zouxy09/article/details/7929348 .Adaboost的基础知识可以参考书籍:统计学…
以上两篇文章中检测在DOG空间中稳定的特征点,lowe已经提到这些特征点是比Harris角点等特征还要稳定的特征.下一步骤我们要考虑的就是如何去很好地描述这些DOG特征点. 下面好好说说如何来描述这些特征点.许多资料中都提到SIFT是一种局部特征,这是因为在SIFT描述子生成过程中,考虑的是该特征点邻域特征点的分布情况(而没有利用全局信息).本步骤中主要计算过程包括:确定特征点的方向和生成特征描述符. 确定特征点方向 在特征点的确定过程中,特征点的坐标以及尺度被确定下来(坐标很重要,尺度更重要,…
ORBSLAM2中使用ORB描述子的方法 经典的视觉SLAM系统大体分为两种:其一是基于特征点法的,其二是基于直接法的.那么本文主要就讲特征点法的SLAM. 基于特征点法的视觉SLAM系统典型的有PTAM,ORBSLAM等.本文主要围绕ORBSLAM2的方案来阐述特征点法SLAM,因为ORBSLAM2可以说是特征点法SLAM的巅峰之作.ORBSLAM2采用三个主要线程:跟踪,局部建图和闭环以及一个额外线程:全局BA,该线程只有在闭环时才会触发.值得注意的是,ORBSLAM2中每个模块中都采用OR…
1.直方图 用于计算图片特征,表达, 使得数据具有总结性, 颜色直方图对数据空间进行量化,好比10个bin 2. 聚类 类内对象的相关性高 类间对象的相关性差 常用算法:kmeans, EM算法, meanshift, 谱聚类(密度聚类), 层次聚类 kmeans聚类 选取k个类中心,随机选取 计算每个点跟k个类中心的位置 把数据点分配给距离最近的一个类中心 计算新的类中心-对该类中的所有点取均值 类中心数K的选取 K类平均质心的距离加权平均值, 当k=5时的斜率发生变化,我们可以选取5作为分类…
二进制描述子设计原则体现在三个部分: 采样pattern 方向orientation compensation 配对sampling pairs ORB基于BRIEF: BRISK是用于OKVIS的描述子 FREAK的pattern设计基于人眼的视网膜 参考文献: 1. https://gilscvblog.com/category/descriptors/…