PeleeNet是DenseNet的一个变体,没有使用流行的深度可分离卷积,PeleeNet和Pelee仅通过结构上的优化取得了很不错的性能和速度,读完论文可以学到很多网络设计的小窍门.   来源:晓飞的算法工程笔记 公众号 论文: Pelee: A Real-Time Object Detection System on Mobile Devices 论文地址:https://arxiv.org/abs/1804.06882 论文代码:https://github.com/Robert-Jun…
原文:NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩.机器学习及最优化算法 导读 AI领域顶会NeurIPS正在加拿大蒙特利尔举办.本文针对实验室关注的几个研究热点,模型压缩.自动机器学习.机器学习与最优化算法,选取23篇会议上入选的重点论文进行分析解读,与大家分享.Enjoy! NeurIPS (Conference on Neural Information Processing Systems,神经信息处理系统进展大会)与ICML并称为神经计算和机器学习领域两大顶级学…
NeurIPS 2018 中的贝叶斯研究 WBLUE 2018年12月21日   雷锋网 AI 科技评论按:神经信息处理系统大会(NeurIPS)是人工智能领域最知名的学术会议之一,NeurIPS 2018 已于去年 12 月 3 日至 8 日在加拿大蒙特利尔市举办.来自 Zighra.com 的首席数据科学家在参加完此次会议之后,撰写了一篇关于贝叶斯研究的参会总结,雷锋网 AI 科技评论编译整理如下. 此次会议支持现场直播,所有讲座的视频内容均可以在 NeurIPS 的 Facebook 主页…
Channel-wise卷积在channel维度上进行滑动,巧妙地解决卷积操作中输入输出的复杂全连接特性,但又不会像分组卷积那样死板,是个很不错的想法   来源:晓飞的算法工程笔记 公众号 论文: ChannelNets: Compact and Efficient Convolutional Neural Networks via Channel-Wise Convolutions 论文地址:https://arxiv.org/abs/1809.01330 论文代码:https://githu…
小蚂蚁说: 长期以来,车险定损(通过现场拍摄定损照片确定车辆损失,以作为保险公司理赔的依据)是车险理赔中最为重要的操作环节.以往传统保险公司的车险处理流程,一般为报案.现场查勘.提交理赔材料.审核.最终赔付.对用户和保险公司分别造成了时间成本和人力 .管理成本.蚂蚁“定损宝”不仅能通过AI算法逐步替代定损环节中重复性人工作业流程,降低车险定损环节中的人力及管理成本,而且希望在未来通过深度学习技术解决用户长期的痛点,使得用户在车险理赔过程中可以在现场拍照上传图片,在几秒内就能得到准确的定损结论,并…
2018  AI产业界大盘点 大事件盘点 “ 1.24——Facebook人工智能部门负责人Yann LeCun宣布卸任 Facebook人工智能研究部门(FAIR)的负责人Yann LeCun宣布卸任,之后将担任Facebook首席人工智能科学家,保留对FAIR的研究方向的控制.同时,原工作将由新任负责人Jérôme Pesenti  接替,Facebook应用机器学习小组(AML)和Yann  LeCun将同时向其汇报.而Jérôme Pesenti  将直接向Facebook  CTO汇报…
和 Nested Partition 有相通之处? 伯克利提出 AdaSearch:一种用于自适应搜索的逐步消除方法 在机器学习领域的诸多任务当中,我们通常希望能够立足预先给定的固定数据集找出问题的答案.然而,在某些应用场景下我们并没有先验数据可供参考 ; 相反,我们必须自行收集数据以回答那些自己感兴趣的问题.举例来说,这种情况在环境污染物监测以及人口普查类调查中就比较常见.自行收集数据的方式,使得我们能够将注意力集中在相关度最高的信息来源身上.然而,确定哪些信息来源能够生成有用的指标同样不是件…
姚班天才少年鬲融凭非凸优化研究成果获得斯隆研究奖 近日,美国艾尔弗·斯隆基金会(The Alfred P. Sloan Foundation)公布了2019年斯隆研究奖(Sloan Research Fellowships)获奖名单,华裔学者鬲融获此殊荣. 鬲融 2004 年从河北省保送至清华大学计算机系,是首届清华姚班毕业生,普林斯顿大学计算机科学系博士,曾在微软研究院新英格兰分部做博士后,2015年至今在杜克大学担任助理教授. 斯隆研究奖自1955年设立,每年颁发一次,旨在向物理学.化学和数…
作者:guan-yuan 项目地址:awesome-AutoML-and-Lightweight-Models 博客地址:http://www.lib4dev.in/info/guan-yuan/awesome-AutoML-and-Lightweight-Models/163359611 awesome-AutoML-and-Lightweight-Models A list of high-quality (newest) AutoML works and lightweight model…
Awesome-AutoML-and-Lightweight-Models 原文:http://bbs.cvmart.net/articles/414/zi-yuan-automl-yu-qing-liang-mo-xing-da-lie-biao A list of high-quality (newest) AutoML works and lightweight models including 1.) Neural Architecture Search, 2.) Lightweight…