tf-tensorboard的一些注意事项】的更多相关文章

import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf #tensorboard --logdir="./" # 命令行参数 python x.py --max_step=500 tf.app.flags.DEFINE_integer("max_step",1000,"train step number") FLAGS = tf.app.flags.FL…
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf #tensorboard --logdir="./" def linearregression(): with tf.variable_scope("original_data"): X = tf.random_normal([100,1],mean=0.0,stddev=1.0) y_true = tf.matmul…
1. tf.reuse_default_graph() # 对graph结构图进行清除和重置操作 2.tf.summary.FileWriter(path)构造writer实例化,以便进行后续的graph写入 参数说明:path表示路径 3.writer.add_graph(sess.graph) 将当前参数的graph写入到tensorboard中 参数说明:sess.graph当前的网络结构图 4. summ = tf.summary.merge_all() # 将所有的summary都添加…
圣诞节玩的有点嗨,差点忘记更新.祝大家昨天圣诞节快乐,再过几天元旦节快乐. 来继续学习,在/home/your_name/TensorFlow/cifar10/ 下新建文件夹cifar10_train,用来保存训练时的日志logs,继续在/home/your_name/TensorFlow/cifar10/ cifar10.py中输入如下代码: def train(): # global_step global_step = tf.Variable(0, name = 'global_step'…
报错:class BeholderHook(tf.estimator.SessionRunHook):AttributeError: module 'tensorflow.python.estimator.estimator_lib' has no attribute 'SessionRunHook' 检查tensorboard的安装情况:pip3 list 发现tensorboard与tensorflow的版本不一致:卸载 pip3 uninstall tensorboard:重新安装 pip…
一.TensorFlow高层次机器学习API (tf.contrib.learn) 1.tf.contrib.learn.datasets.base.load_csv_with_header 加载csv格式数据 2.tf.contrib.learn.DNNClassifier 建立DNN模型(classifier) 3.classifer.fit 训练模型 4.classifier.evaluate 评价模型 5.classifier.predict 预测新样本 完整代码: from __fut…
tensorboard是TF提供的一个可视化的工具 1.tensorboard可视化的数据来源? 将tensorflow程序运行过程中输出的日志文件进行可视化展示. 1.1 tensorflow怎样输出日志文件呢? tf.summary.FileWriter The FileWriter class provides a mechanism to create an event file in a given directory and add summaries and events to i…
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEPS = 20 BATCH_SIZE = 50 INPUT_SIZE = 1 OUTPUT_SIZE = 1 CELL_SIZE = 10 LR = 0.006 BATCH_START_TEST = 0 def get_batch(): global BATCH_START, TIME_STEPS x…
import tensorflow as tf from sklearn.datasets import load_digits #from sklearn.cross_validation import train_test_split from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer # load data digits = load_di…
import tensorflow as tf import numpy as np def add_layer(inputs, in_size, out_size, n_layer, activation_function=None): # add one more layer and return the output of this layer layer_name = 'layer%s' % n_layer with tf.name_scope(layer_name): with tf.…
TensorBoard简介 Tensorflow发布包中提供了TensorBoard,用于展示Tensorflow任务在计算过程中的Graph.定量指标图以及附加数据.大致的效果如下所示, TensorBoard工作机制 TensorBoard 通过读取 TensorFlow 的事件文件来运行.TensorFlow 的事件文件包括了你会在 TensorFlow 运行中涉及到的主要数据.关于TensorBoard的详细介绍请参考TensorBoard:可视化学习.下面做个简单介绍. Tensorf…
圣诞节玩的有点嗨,差点忘记更新.祝大家昨天圣诞节快乐,再过几天元旦节快乐. 来继续学习,在/home/your_name/TensorFlow/cifar10/ 下新建文件夹cifar10_train,用来保存训练时的日志logs,继续在/home/your_name/TensorFlow/cifar10/ cifar10.py中输入如下代码: def train(): # global_step global_step = tf.Variable(0, name = 'global_step'…
转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程: https://www.tensorflow.org/versions/master/how_tos/graph_viz/index.html TensorFlow自带的一个强大的可视化工具 功能 这是TensorFlow在MNIST实验数据上得到Tensorboard结果 Event: 展示训练过程中的统计数据(最值…
为了更方便的理解.调试和优化TF程序,我们可以使用TensorBoard(可视化工具).可以使用TensorBoard查看graph,绘制图表执行过程中的定量指标.TensorBoard是完全可配置的. 1 序列化数据(Serializing the data)到磁盘 TensorBoard通过读取TF事件文件进行操作,该文件包含了在TF运行过程中产生的摘要数据(summary data) 首先创建从中要收集摘要数据的TF图,并决定图中的哪些点(nodes)需要summary operation…
1.什么是Tensorboard? PPT设计原则中有这样一条,叫"文不如表,表不如图",可见图表在表达中更为直观.明确.程序设计中也是一样,我们经常用图表来描述程序的结构和流程,本文所述的Tensorboard就是Tensorflow提供的一款强大的可视化工具,可以借助图表更方便地进行Tensorflow程序的理解.调试和优化. 左面的数据流图cool吗?它是Tensorflow官网上给出的demo,下面,本文就结合一个具体的例子,介绍下Tensorboard的基本使用. 2. 如何…
tensorflow笔记(三)之 tensorboard的使用 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7429344.html 前言 这篇博客将介绍tensorflow当中一个非常有用的可视化工具tensorboard的使用,它将对我们分析训练效果,理解训练框架和优化算法有很大的帮助. 还记得我的第一篇tensorflow博客上的的例子吗?这篇博客会以第一篇tensorflow博客的tensorboard图为例进行展…
为了更方便 TensorFlow 程序的理解.调试与优化,TensorFlow发布了一套叫做 TensorBoard 的可视化工具.你可以用 TensorBoard 来展现你的 TensorFlow 图像,绘制图像生成的定量指标图以及附加数据. TensorBoard工具通过读取TensorFlow产生的事件(events)文件来进行图像绘制,其中这个事件文件是在运行TensorFlow时产生的summary数据.简单地说,可以将TensorBoard的使用分为两步:数据序列化和启动Tensor…
首先介绍几个用法: with tf.name_scope(name = "inputs"): 这个是用于区分区域的.如,train,inputs等. xs = tf.placeholder(tf.float32,[None,1],name = "x_input") name用于对节点的命名. merged = tf.summary.merge_all() 注:这里很多代码可能跟莫烦老师的代码并不一样,主要是由于版本变迁,tensorflow很多函数改变. 这一步很重…
TensorBoard是TensorFlow 的可视化工具.主要为了更方便用户理解 TensorFlow 程序.调试与优化,用户可以用 TensorBoard 来展现 TensorFlow 图像,绘制图像生成的定量指标图以及附加数据. TensorBoard 通过读取 TensorFlow 的事件文件来运行.TensorFlow 的事件文件包括了在 TensorFlow 运行中涉及到的主要数据,在运行计算图后,tensorflow会在当前文件夹下,生成一个log文件夹,所有的事件文件都会放在文件…
前言 在上一篇中,我简单介绍了一下Tensorflow以及在本机及阿里云的PAI平台上跑通第一个示例的步骤.在本篇中我将稍微讲解一下几个基本概念以及Tensorflow的基础语法. 本文代码都是基于API版本r1.4.本文中本地开发环境为Pycharm,在文中不再赘述. 名词解释 核心概念 和很多开发语言设计一样,Tensorflow提供了多个级别的客户端API,其中最底层叫Tensorflow Core,使用这一层API可以完全控制Tensorflow,但是使用难度上也相对较大.在Tensor…
前言 本文接着上一篇继续来聊Tensorflow的接口,上一篇中用较低层的接口实现了线性模型,本篇中将用更高级的API--tf.estimator来改写线性模型. 还记得之前的文章<机器学习笔记2 - sklearn之iris数据集>吗?本文也将使用tf.estimator改造该示例. 本文代码都是基于API版本r1.4.本文中本地开发环境为Pycharm,在文中不再赘述. tf.estimator 内置模型 比起用底层API"较硬"的编码方式,tf.estimator的在…
先上代码: from __future__ import absolute_import from __future__ import division from __future__ import print_function # -*- coding: utf-8 -*- """ Created on Tue Nov 14 20:34:00 2017 @author: HJL """ # Copyright 2015 The TensorFl…
[写在前面] 用Tensorflow(TF)已实现好的卷积神经网络(CNN)模型来训练自己的数据集,验证目前较成熟模型在不同数据集上的准确度,如Inception_V3, VGG16,Inception_resnet_v2等模型.本文验证Inception_resnet_v2基于菜场实拍数据的准确性,测试数据为芹菜.鸡毛菜.青菜,各类别样本约600张,多个菜场拍摄,不同数据源. 补充:自己当初的计划是用别人预训练好的模型来再训练自己的数据集已使可以完成新的分类任务,但必须要修改代码改网络结构,并…
在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可以显示网络结构,又可以显示训练和测试过程中各层参数的变化情况.本博文分为四个部分,第一部分介绍相关函数,第二部分是代码测试,第三部分是运行结果,第四部分介绍相关参考资料. 一. 相关函数 TensorBoard的输入是tensorflow保存summary data的日志文件.日志文件名的形式如:e…
摘要: 1.代码例子 2.主要功能内容: 1.代码例子 <TensorFlow实战>使用MLP处理Mnist数据集并TensorBoard上显示 2.主要功能 执行TensorBoard程序,–logdir指定TensorFlow日志路径,TensorBoard自动生成所有汇总数据可视化结果. 例如:tensorboard –logdir=/tmp/tensorflow/mnist/logs/mnist_with_summaries ,将显示的网址(比如:localhost:6006)复制到浏…
前言 只有光头才能变强. 文本已收录至我的GitHub仓库,欢迎Star:https://github.com/ZhongFuCheng3y/3y 回顾前面: 从零开始学TensorFlow[01-搭建环境.HelloWorld篇] 什么是TensorFlow? TensorFlow读写数据 如何理解axis? 这篇文章主要讲讲TensorBoard的基本使用以及name_scope和variable_scope的区别 一.入门TensorBoard 首先来讲讲TensorBoard是什么吧,我…
TensorBoard TensorFlow自带的可视化工具,能够以直观的流程图的方式,清楚展示出整个神经网络的结构和框架,便于理解模型和发现问题. 可视化学习:https://www.tensorflow.org/guide/summaries_and_tensorboard 图的直观展示:https://www.tensorflow.org/guide/graph_viz 直方图信息中心:https://www.tensorflow.org/guide/tensorboard_histogr…
一.前述 TensorBoard是tensorFlow中的可视化界面,可以清楚的看到数据的流向以及各种参数的变化,本文基于一个案例讲解TensorBoard的用法. 二.代码 设计一个MLP多层神经网络来训练数据 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data max_steps = 1000#最大迭代次数 learning_rate = 0.001#学习率 dropout =…
打开Python Shell,执行以下代码: import tensorflow as tf import numpy as np #输入数据 x_data = np.linspace(-1,1,300)[:, np.newaxis] noise = np.random.normal(0,0.05, x_data.shape) y_data = np.square(x_data)-0.5+noise #输入层 with tf.name_scope('input_layer'): #输入层.将这两…
1.add saclar and histogram tf.summary.scalar('mean', mean) tf.summary.histogram('histogram', var) 2. sess-op merged = tf.summary.merge_all() 3.writer init train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train', sess.graph) 4.sess run & w…