Bagging和Boosting的介绍及对比】的更多相关文章

"团结就是力量"这句老话很好地表达了机器学习领域中强大「集成方法」的基本思想.总的来说,许多机器学习竞赛(包括 Kaggle)中最优秀的解决方案所采用的集成方法都建立在一个这样的假设上:将多个模型组合在一起通常可以产生更强大的模型. 一.集成方法 集成(Ensemble)方法就是针对同一任务,将多个或多种分类器进行融合,从而提高整体模型的泛化能力.对于一个复杂任务,将多个模型进行适当地综合所得出的判断,通常要比任何一个单独模型的判读好.也就是我们常说的"三个臭皮匠,顶过诸葛亮…
[白话解析] 通俗解析集成学习之bagging,boosting & 随机森林 0x00 摘要 本文将尽量使用通俗易懂的方式,尽可能不涉及数学公式,而是从整体的思路上来看,运用感性直觉的思考来解释 集成学习.并且从名著中延伸了具体应用场景来帮助大家深入这个概念. 在机器学习过程中,会遇到很多晦涩的概念,相关数学公式很多,大家理解起来很有困难.遇到类似情况,我们应该多从直觉角度入手思考,用类比或者举例来附会,这样往往会有更好的效果. 我在讲解论述过程中给自己的要求是:在生活中或者名著中找一个例子,…
我们学过决策树.朴素贝叶斯.SVM.K近邻等分类器算法,他们各有优缺点:自然的,我们可以将这些分类器组合起来成为一个性能更好的分类器,这种组合结果被称为 集成方法 (ensemble method)或者 元算法 (meta-method).使用集成算法时有多种形式: 不同算法的集成 同一种算法在不同设置下的集成 数据集不同部分分配 给不同分类器之后的集成 1.bagging 和boosting综述 bagging 和boosting中使用的分类器类型都是一样的. bagging,也成为自举汇聚法…
本文介绍了集成学习的各种概念,并给出了一些必要的关键信息,以便读者能很好地理解和使用相关方法,并且能够在有需要的时候设计出合适的解决方案. 本文将讨论一些众所周知的概念,如自助法.自助聚合(bagging).随机森林.提升法(boosting).堆叠法(stacking)以及许多其它的基础集成学习模型. 为了使所有这些方法之间的联系尽可能清晰,我们将尝试在一个更广阔和逻辑性更强的框架中呈现它们,希望这样会便于读者理解和记忆. 何为集成方法? 集成学习是一种机器学习范式.在集成学习中,我们会训练多…
http://www.cnblogs.com/maybe2030/p/4585705.html 阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 袋外错误率(oob error) 6 随机森林工作原理解释的一个简单例子 7 随机森林的Python实现 8 参考内容 回到顶部 1 什么是随机森林? 作为新兴起的.高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做…
1 前言 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < 0.5). 集成算法的成功在于保证弱分类器的多样性(Diversity).而且集成不稳定的算法也能够得到一个比较明显的性能提升. 集成学习可以用于分类问题集成,回归问题集成,特征选取集成,异常点检测集成等等,可以说所有的机器学习领域都可以看到集成学习的身影. 2 集成学习概述 常见的集成学习思想有∶ Bag…
使用机器学习方法解决问题时,有较多模型可供选择. 一般的思路是先根据数据的特点,快速尝试某种模型,选定某种模型后, 再进行模型参数的选择(当然时间允许的话,可以对模型和参数进行双向选择) 因为不同的模型具有不同的特点, 所以有时也会将多个模型进行组合,以发挥"三个臭皮匠顶一个诸葛亮的作用", 这样的思路, 反应在模型中,主要有两种思路:Bagging和Boosting 1. Bagging Bagging 可以看成是一种圆桌会议, 或是投票选举的形式,其中的思想是:"群众的眼…
作为集成学习的二个方法,其实bagging和boosting的实现比较容易理解,但是理论证明比较费力.下面首先介绍这两种方法. 所谓的集成学习,就是用多重或多个弱分类器结合为一个强分类器,从而达到提升分类方法效果.严格来说,集成学习并不算是一种分类器,而是一种分类器结合的方法. 1.bagging bagging算是很基础的集成学习的方法,他的提出是为了增强分类器效果,但是在处理不平衡问题上却有很好的效果. 如上图,原始数据集通过T次随机采样,得到T个与原始数据集相同大小的子数据集,分别训练得到…
Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法.即将弱分类器组装成强分类器的方法. 首先介绍Bootstraping,即自助法:它是一种有放回的抽样方法(可能抽到重复的样本). 1.Bagging (bootstrap aggregating) Bagging即套袋法,其算法过程如下: A)从原始样本集中抽取训练集.每轮从原始样本集中使用Bootstraping的方法抽取n个训练样本(在训练集中,…
声明:本文用到的代码均来自于PRTools(http://www.prtools.org)模式识别工具箱,并以matlab软件进行实验. (1)在介绍Bagging和Boosting算法之前,首先要简单了解什么是集成学习? 集成学习(Ensemble Learning)是目前模式识别与机器学习中常用的一种学习算法,是使用一系列的学习器(分类器)通过某种规则(投票法.加权投票等)将各分类器的学习结果进行融合,达到比单学习器识别效果更好地目的. 可以打一个简单的比喻,如果我们将"学习器"看…