在本系列的最后,我们将介绍另一种方法,即利用一个预先训练好的CNN来解决我们一直在研究的硬币识别问题. 在这里,我们看一下转移学习,调整预定义的CNN,并使用Model Builder训练我们的硬币识别模型. 我们将使用ML.NET代替Keras.NET.为什么不使用Keras.NET呢?尽管Keras.NET非常简单,易于学习,虽然它包含前面提到的预定义模型,但它的简单性使我们无法自定义CNN架构来适应我们的问题. ML.NET是一个微软的免费机器学习框架,旨在使用C#和F#进行开发.最重要的…
CNCC2017中的深度学习与跨媒体智能 转载请注明作者:梦里茶 目录 机器学习与跨媒体智能 传统方法与深度学习 图像分割 小数据集下的深度学习 语音前沿技术 生成模型 基于贝叶斯的视觉信息编解码 珠算:基于别噎死推断的深度生成模型库 图像与视频生成的规则约束 景深风景生成 骨架约束的人体视频生成 跨媒体智能 视频检索的哈希学习 多媒体与知识图谱 基于锚图的视觉数据分析 视频问答 细粒度分类 跨媒体关联与检索(待补充) 正片开始 传统方法与深度学习 图像分割 图像分割是医疗图像中一个很重要的任务…
[吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第一周测验[中英] 第一周测验 - 深度学习简介 和“AI是新电力”相类似的说法是什么? [  ]AI为我们的家庭和办公室的个人设备供电,类似于电力. [  ]通过“智能电网”,AI提供新的电能. [ ]AI在计算机上运行,​​并由电力驱动,但是它正在让以前的计算机不能做的事情变为可能. [★]就像100年前产生电能一样,AI正在改变很多的行业. 请注意: 吴恩达在视频中表达了同样的观点. 哪些是深度学习快速发展的原因? (两个选项…
Deep learning for visual understanding: A review 视觉理解中的深度学习:回顾 ABSTRACT: Deep learning algorithms are a subset of the machine learning algorithms, which aim at discovering multiple levels of distributed representations. Recently, numerous deep learni…
深度学习---1cycle策略:实践中的学习率设定应该是先增再降 本文转载自机器之心Pro,以作为该段时间的学习记录 深度模型中的学习率及其相关参数是最重要也是最难控制的超参数,本文将介绍 Leslie Smith 在设置超参数(学习率.动量和权重衰减率)问题上第一阶段的研究成果.具体而言,Leslie Smith 提出的 1cycle 策略可以令复杂模型的训练迅速完成.它表示在 cifar10 上训练 resnet-56 时,通过使用 1cycle,能够在更少的迭代次数下,得到和原论文相比相同…
Generative Adversarial Network 是深度学习中非常有趣的一种方法.GAN最早源自Ian Goodfellow的这篇论文.LeCun对GAN给出了极高的评价: “There are many interesting recent development in deep learning…The most important one, in my opinion, is adversarial training (also called GAN for Generativ…
在本系列文章中,我们将使用深度神经网络(DNN)来执行硬币识别.具体来说,我们将训练一个DNN识别图像中的硬币. 在本文中,我们将描述一个OpenCV应用程序,它将检测图像中的硬币.硬币检测是硬币完整识别之前的一个常见阶段.它包括从给定图像中检测和提取硬币. 本系列附带的代码将使用Keras在C#中实现.在本系列的最后一篇文章中,我们将简要地使用ML.NET.在众多选择中,为什么要使用Keras.NET呢?Keras.NET 非常容易学习,因为它基本上是从Python编写的经典TensorFlo…
在这篇文章中,我们将回顾监督机器学习的基础知识,以及训练和验证阶段包括哪些内容. 在这里,我们将为不了解AI的读者介绍机器学习(ML)的基础知识,并且我们将描述在监督机器学习模型中的训练和验证步骤. ML是AI的一个分支,它试图通过归纳一组示例而不是接收显式指令来让机器找出如何执行任务.ML有三种范式:监督学习.非监督学习和强化学习.在监督学习中,一个模型(我们将在下面讨论)通过一个称为训练的过程进行学习,在这个过程中,它会提供示例输入和正确输出.它了解数据集示例中哪些特性映射到特定输出,然后能…
背景 在之前的文章中,我们已经提到过团队在UI自动化这方面的尝试,我们的目标是实现基于 单一图片到代码 的转换,在这个过程不可避免会遇到一个问题,就是为了从单一图片中提取出足够的有意义的结构信息,我们必须要拥有从图片中切割出想要区块(文字.按钮.商品图片等)的能力,而传统切割算法遇到复杂背景图片往往就捉襟见肘了(见下图),这个时候,我们就需要有能力把复杂前后景的图片划分为各个层级图层,再交给切割算法去处理,拿到我们期望的结构信息. 经过传统切割算法处理,会无法获取图片结构信息,最终只会当成一张图…
[中英][吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第二周测验 第2周测验 - 神经网络基础 神经元节点计算什么? [ ]神经元节点先计算激活函数,再计算线性函数(z = Wx + b) [★]神经元节点先计算线性函数(z = Wx + b),再计算激活. [ ]神经元节点计算函数g,函数g计算(Wx + b). [ ]在 将输出应用于激活函数之前,神经元节点计算所有特征的平均值 请注意:神经元的输出是a = g(Wx + b),其中g是激活函数(sigmoid,tanh,R…