Spark初探】的更多相关文章

Apache Spark是一个针对大规模数据的快速.统一处理引擎. One stack rule them all 1-Stream Processing :spark Streaming 2-Ad-hoc-Queries :Spark SQL 3-Batch Processing: Spark Core(和Map-reduce一样是批处理框架) Map-reduce慢的原因: 1-在执行Map-reduce job运行的过程中有大量的磁盘操作: 2-partition的时候和进入reduce之…
摘要:本文则主要介绍TalkingData在大数据平台建设过程中,逐渐引入Spark,并且以Hadoop YARN和Spark为基础来构建移动大数据平台的过程. 当下,Spark已经在国内得到了广泛的认可和支持:2014年,Spark Summit China在北京召开,场面火爆:同年,Spark Meetup在北京.上海.深圳和杭州四个城市举办,其中仅北京就成功举办了5次,内容更涵盖Spark Core.Spark Streaming.Spark MLlib.Spark SQL等众多领域.而作…
转载自http://www.csdn.net/article/2015-06-08/2824889 http://www.zhihu.com/question/26568496 当下,Spark已经在国内得到了广泛的认可和支持:2014年,Spark Summit China在北京召开,场面火爆:同年,Spark Meetup在北京.上海.深圳和杭州四个城市举办,其中仅北京就成功举办了5次,内容更涵盖Spark Core.Spark Streaming.Spark MLlib.Spark SQL…
当下,Spark已经在国内得到了广泛的认可和支持:2014年,Spark Summit China在北京召开,场面火爆:同年,Spark Meetup在北京.上海.深圳和杭州四个城市举办,其中仅北京就成功举办了5次,内容更涵盖Spark Core.Spark Streaming.Spark MLlib.Spark SQL等众多领域.而作为较早关注和引入Spark的移动互联网大数据综合服务公司,TalkingData也积极地参与到国内Spark社区的各种活 动,并多次在Meetup中分享公司的Sp…
摘要 当面向对象遇到函数式编程,这就是Scala.简练的语言描述与简单的例子相辅相成,希望能够对大家学习Scala有所帮助. scala 入门 定义 Scala语言是一种面向对象语言,同时又结合了命令式(imperative)和函数式(functional)编程风格.官网描述:Object-Oriented Meets Functional(面向对象遇到函数式编程). 安装 下载地址http://www.scala-lang.org/download/ 当前版本2.11.4 设置环境变量 exp…
Spark小课堂Week5 Scala初探 Scala是java威力加强版. 对Java的改进 这里会结合StreamingContext.scala这个代码说明下对Java的改进方面. 方便测试方式,增加了可以指定位置的作用域. 成员变量声明,构造方法,get.set方法一体化. []表示泛型,不是<> class StreamingContext private[streaming] ( 
 sc_ : SparkContext, 
 cp_ : Checkpoint,
 batchDur…
Spark Streaming揭秘 Day21 动态Batch size实现初探(下) 接昨天的描述,今天继续解析动态Batch size调整的实现. 算法 动态调整采用了Fix-point迭代算法,其本质是一种回归计算,算法如下: 有点类似机器学习,学习当前SparkStreaming的状况,根据状况把Batch Duration调到最小,来获得最高的稳定性. 下面这张图比较重要,是主要描述了算法的实现思想: 基本思想是按100ms一个小的批次,根据处理情况,Job Generator会调整自…
Spark Streaming揭秘 Day20 动态Batch size实现初探(上) 今天开始,主要是通过对动态Batch size调整的论文的解析,来进一步了解SparkStreaming的处理机制,因为比较偏理论,么有代码演示. 缘起 从目前的业务发展来看,线上处理目前来看已经越来越重要,而一个突出的矛盾就是,传统框架Oracle+j2ee的框架下,存在一个致命的问题,就是无法突破单台机器的局限,可能容纳此刻流入的数据,于是分布式流处理程序越来越火热. 流处理的核心是追求更快的处理速度.但…
本期内容 : BatchDuration与 Process Time 动态Batch Size Spark Streaming中有很多算子,是否每一个算子都是预期中的类似线性规律的时间消耗呢? 例如:join操作和普通Map操作的处理数据的时间消耗是否会呈现出一致的线性规律呢,也就是说,并非数据量规模越大就是简单加大BatchDuration 就可以解决问题的,数据量是一个方面,计算的算子也是一个考量的因素. 使用BatchSize来适配我们的流处理程序 : 线上的处理程序越来越重要,流入的数据…
本文目的     最近在使用Spark进行数据清理的相关工作,初次使用Spark时,遇到了一些挑(da)战(ken).感觉需要记录点什么,才对得起自己.下面的内容主要是关于Spark核心-RDD的相关的使用经验和原理介绍,作为个人备忘,也希望对读者有用.     为什么选择Spark     原因如下 代码复用:使用Scala高级语言操作Spark,灵活方便,面向对象,函数编程的语言特性可以全部拿来.Scala基本上可以无缝集成java及其相关库.最重要的是,可以封装组件,沉淀工作,提高工作效率…
最近老大让用Spark做一个ETL项目,搭建了一套只有三个结点Standalone模式的Spark集群做测试,基础数据量大概8000W左右.看了官方文档,Spark确实在Map-Reduce上提升了很多,可是官方明确提出了在Interactive Data 方面性能提升最大.但是做ETL的数据之间是平行结构,没有任何交互,数据处理完直接就推送走了,也不用做任何缓存,因此完全体现不出来Spark的优势.具体可以用下面这个例子来说, 假设Hadoop集群中有一个文件,每行有一个随机数,我们现在需要计…
spark带了一个NetworkWordCount测试程序,用以统计来自某TCP连接的单词输入: /usr/local/spark/bin/run-example streaming.NetworkWordCount localhost 9999 再启动netcat: nc -lk 9999 尝试输入一些单词: hello world damn it 可以看到NetworkWordCount产生如下输出: ------------------------------------------- T…
摘要:pandas是一个强大的Python数据分析工具包,pandas的两个主要数据结构Series(一维)和DataFrame(二维)处理了金融,统计,社会中的绝大多数典型用例科学,以及许多工程领域.在Spark中,python程序可以方便修改,省去java和scala等的打包环节,如果需要导出文件,可以将数据转为pandas再保存到csv,excel等. 1.Pandas是什么? pandas是一个强大的Python数据分析工具包,是一个提供快速,灵活和表达性数据结构的python包,旨在使…
Transformer: 是一个抽象类包含特征转换器, 和最终的学习模型, 需要实现transformer方法 通常transformer为一个RDD增加若干列, 最终转化成另一个RDD, 1. 特征转换器通常处理一个dataset, 把其中一列数据转化成一列新的数据. 并且把新的数据列添加到dataset后面,产生一个新的dataset输出. 2. 一个学习模型转换器用来处理一个数据集, 读取包含特征向量的那一列数据, 为每一个特征向量预测一个结果标签, 把预测结果标签作为一个新的数据列里添加…
Spark job server是一个基于Spark的服务系统,提供了管理SparkJob,context,jar的RestFul接口. 专注标注原文链接 http://www.cnblogs.com/shenh062326/p/6193375.html 使用说明 参考 http://debugo.com/spark-jobserver/ 原理介绍 服务端JobServer首先启动,它会启动一个名叫WebApi的HttpService服务,它提供下面这几个Routes val myRoutes…
1.  介绍 Spark Streaming是Spark生态系统中一个重要的框架,建立在Spark Core之上,与Spark SQL.GraphX.MLib相并列. Spark Streaming是Spark Core的扩展应用,具有可扩展性.高吞吐量.可容错性等特点. 可以监控来自Kafka.Flume.HDFS.Twitter.Socket套接字等数据,通过复杂算法及一系列的计算分析数据,且可将分析结果存入HDFS.数据库或前端页面. 2. 工作原理 Spark的核心是RDD(或DataF…
spark是一个高性能的并发的计算平台,而netflow是一种一般来说数量级很大的数据.本文记录初步使用spark 计算netflow数据的大致过程. 本文包括以下过程: 1. spark环境的搭建 2. netflow数据的生成与处理 3. 通过spark 计算netflow数据 spark环境的搭建 spark环境的搭建主要分2部分. hadoop的环境的搭建 spark的安装 hadoop的安装 hadoop的安装包括,hdfs的安装和yarn的安装.  读本部分之前要先去查阅hdfs和y…
1. Graphx概念 针对某些领域,如社交网络.语言建模等,graph-parallel系统可以高效地执行复杂的图形算法,比一般的data-parallel系统更快. Graphx是将graph-parallel的data-parallel统一到一个系统中.允许用户将数据当成一个图或一个集合RDD,而简化数据移动或复杂操作. 2. 属性图 属性图为有向多重图,带有链接到每个顶点和边的用户定义的对象.有向多重图多个并行的边共享相同源和目的地顶点.每个顶点由一个唯一的64位长的标识符(Vertex…
本文概要 本文主要从以下几点阐述RDD,了解RDD 什么是RDD? 两种RDD创建方式 向给spark传递函数Passing Functions to Spark 两种操作之转换Transformations 两种操作之行动Actions 惰性求值 RDD持久化Persistence 理解闭包Understanding closures 共享变量Shared Variables 总结 Working with Key-Value Pairs.Shuffle operations.patition…
一.运行架构概览 Spark架构是主从模型,分为两层,一层管理集群资源,另一层管理具体的作业,两层是解耦的.第一层可以使用yarn等实现. Master是管理者进程,Worker是被管理者进程,每个Worker节点启动一个Worker进程,了解每台机器的资源有多少,并将这些信息汇报各Master进程. 每个提交的作业程序对应一个Driver和多个Executor,每个Executor执行具体的任务. 图 Spark基本运行架构 二.运行模式 Local 伪分布式 Standalone Yarn/…
Java Lambda表达式初探 前言 本文受启发于Trisha Gee在JavaOne 2016的主题演讲Refactoring to Java 8. Java 8已经发行两年多,但很多人仍然在使用JDK7.对企业来说,技术上谨慎未必是坏事,但对个人学习而言,不去学习新技术就很可能被技术抛弃.Java 8一个重要的变更是引入Lambda表达式(lambda expression),这听起来似乎很牛,有种我虽然不知道Lambda表达式是什么,但我仍然觉得很厉害的感觉.不要怕,具体到语言层面上La…
基本信息 作者: Spark亚太研究院   王家林 丛书名:决胜大数据时代Spark全系列书籍 出版社:电子工业出版社 ISBN:9787121247446 上架时间:2015-1-6 出版日期:2015 年1月 开本:16 页码:812 版次:1-1 所属分类: 计算机 > 数据库 > 数据库存储与管理 编辑推荐 Life is short, you need Spark! Spark是当今大数据领域最活跃最热门的高效的大数据通用计算平台.基于RDD,Spark成功地构建起了一体化.多元化的…
本期内容: 1.RDD依赖关系的本质内幕 2.依赖关系下的数据流视图 3.经典的RDD依赖关系解析 4.RDD依赖关系源码内幕 1.RDD依赖关系的本质内幕 由于RDD是粗粒度的操作数据集,每个Transformation操作都会生成一个新的RDD,所以RDD之间就会形成类似流水线的前后依赖关系:在spark中,RDD之间存在两种类型的依赖关系:窄依赖(Narrow Dependency)和宽依赖(Wide Dependency 或者是 Narrow Dependency):如图1所示显示了RD…
Spark 内核 第28课:Spark天堂之门解密 (点击进入博客)从 SparkContext 创建3大核心对象开始到注册给 Master 这个过程中的源码鉴赏 第29课:Master HA彻底解密 (点击进入博客)从 Master 如何基于 ZooKeeper 来做 HA 的源码鉴赏 第30课:Master的注册机制和状态管理解密 (点击进入博客)从 Master 的角度去分析它是如何接收 Worker, Driver, Application 的注册,以及它是如何管理 Driver 和 E…
下载地址.请联系群主 第1章 初探大数据 本章将介绍为什么要学习大数据.如何学好大数据.如何快速转型大数据岗位.本项目实战课程的内容安排.本项目实战课程的前置内容介绍.开发环境介绍.同时为大家介绍项目中涉及的Hadoop.Hive相关的知识 第2章 Spark及其生态圈概述 Spark作为近几年最火爆的大数据处理技术,是成为大数据工程师必备的技能之一.本章将从如下几个方面对Spark进行一个宏观上的介绍:Spark产生背景.特点.发展史.Databricks官方调查结果.Spark与Hadoop…
Mycat中间件配置初探与入门操作 By:授客 QQ:1033553122 实践环境 Mycat-server-1.5.1-RELEASE-20161130213509-win.tar.gz 下载地址: https://github.com/MyCATApache/Mycat-download/blob/master/1.5-RELEASE/Mycat-server-1.5.1-RELEASE-20161130213509-win.tar.gz Win7 配置 server.xml Mycat服…
日常中工作中我并没有对kafka接触很多,但了解到很多的框架都和kafka有着紧密的关系.比如rockmetmq是参考了kafka的设计,neflix的缓存组件ehcache是用kafka做数据的同步.同时kafka在大数据方面通常和spark,hadoop,storm一起使用,所以我对kafka也产生了一些兴趣,抽了些时间去研究了一下这个框架.因为还没有深入的研究和使用,所以只能算是初探~.     kafka架构              左边是kafka,右边是rocketmq.kafka…
Spark-架构 Spark Master at spark://node-01:7077 spark clustermanager_百度搜索 看了之后不再迷糊-Spark多种运行模式 - 简书 Spark不同Cluster Manager下的数据本地性表现 - CSDN博客 Spark架构简明分析 - CSDN博客 Spark 以及 spark streaming 核心原理及实践 - 琉璃块 - 博客园 Spark架构与作业执行流程简介 - 南国故人(Wall) - 博客园 Spark(一):…
转自: http://www.cnblogs.com/magj2006/p/4316264.html spark 系列文章汇总 源码导读 spark 源码导读1 从spark启动脚本开始 spark 源码导读2 进一步窥探Master.Worker启动及通信机制 spark 源码导读3 进一步理解脚本调用关系 spark 源码导读5 列举spark引用的框架和算法 spark 源码导读6 App, Driver 及 Worker的容错恢复 以spark源码为参照分析模式匹配及种类 GraphX…
沉淀再出发:kafka初探 一.前言 从我们接触大数据开始,可能绕在耳边的词汇里面出现的次数越来越多的就包括kfaka了.kafka的设计初衷是希望作为一个统一的信息收集平台,能够实时的收集反馈信息,并需要能够支撑较大的数据量,且具备良好的容错能力.kafka是一个分布式消息队列,具有高性能.持久化.多副本备份.横向扩展能力.生产者往队列里写消息,消费者从队列里取消息进行业务逻辑.一般在架构设计中起到解耦.削峰.异步处理的作用. 二.kafka的使用 2.1.安装jre和zookeeper 在安…