(数学)P、NP、NPC、NP hard问题】的更多相关文章

概念定义: P问题:能在多项式时间内解决的问题: NP问题:(Nondeterministic Polynomial time Problem)不能在多项式时间内解决或不确定能不能在多项式时间内解决,但能在多项式时间内验证的问题: NPC问题:(NP Complete)NP完全问题,所有NP问题在多项式时间内都能规约(Reducibility)到它的NP问题,即解决了此NPC问题,所有NP问题也都能得到解决: NP hard问题:NP难问题,所有NP问题在多项式时间内都能规约(Reducibil…
这或许是众多OIer最大的误区之一.    你会经常看到网上出现“这怎么做,这不是NP问题吗”.“这个只有搜了,这已经被证明是NP问题 了”之类的话.你要知道,大多数人此时所说的NP问题其实都是指的NPC问题.他们没有搞清楚NP问题和NPC问题的概念.NP问题并不是那种“只有搜才 行”的问题,NPC问题才是.好,行了,基本上这个误解已经被澄清了.下面的内容都是在讲什么是P问题,什么是NP问题,什么是NPC问题,你如果不是很 感兴趣就可以不看了.接下来你可以看到,把NP问题当成是 NPC问题是一个…
from http://blog.csdn.net/huang1024rui/article/details/49154507 P.NP.NPC和NP-Hard相关概念的图形和解释 一.相关概念 P: 能在多项式时间内解决的问题 NP: 不能在多项式时间内解决或不确定能不能在多项式时间内解决,但能在多项式时间验证的问题 NPC: NP完全问题,所有NP问题在多项式时间内都能约化(Reducibility)到它的NP问题,即解决了此NPC问题,所有NP问题也都得到解决. NP hard:NP难问题…
P: 能在多项式时间内解决的问题 NP: 不能在多项式时间内解决或不确定能不能在多项式时间内解决,但能在多项式时间验证的问题 NPC: NP完全问题,所有NP问题在多项式时间内都能约化(Reducibility)到它的NP问题,即解决了此NPC问题,所有NP问题也都得到解决. NP hard:NP难问题,所有NP问题在多项式时间内都能约化(Reducibility)到它的问题(不一定是NP问题). 可以参考:https://www.zybuluo.com/chanvee/note/12722…
content: range() np.arange() np.linspace() 一.range(start, stop, step) 1.range() 为 python 自带函数 2.生成一个从start(包含)到stop(不包含),以step为步长的序列.返回一个 list 对象 range(stop) 返回 range object range(start, stop[, step]) 返回 range object 3.start默认为0,stop是必须的,step默认为1,可正可…
yuanwen: http://blog.csdn.net/crossky_jing/article/details/49466127 scikit-learn 练习题 题目:Try classifying classes 1 and 2 from the iris dataset with SVMs, with the 2 first features. Leave out 10% of each class and test prediction performance on these o…
本文转载自:https://blog.csdn.net/u012609509/article/details/70230204 Python中的几种矩阵乘法1. 同线性代数中矩阵乘法的定义: np.dot()np.dot(A, B):对于二维矩阵,计算真正意义上的矩阵乘积,同线性代数中矩阵乘法的定义.对于一维矩阵,计算两者的内积.见如下Python代码: import numpy as np # 2-D array: 2 x 3two_dim_matrix_one = np.array([[1,…
一 .  np.vstack: 按垂直方向(行顺序)堆叠数组构成一个新的数组 In[3]: import numpy as np In[4]: a = np.array([[1,2,3]]) a.shape Out[4]: (1, 3) In [5]: b = np.array([[4,5,6]]) b.shape Out[5]: (1, 3) In [6]: c = np.vstack((a,b)) # 将两个(1,3)形状的数组按垂直方向叠加 print(c) c.shape # 输出形状为…
使用array时,运算符 * 用于计算数量积(点乘),函数 dot() 用于计算矢量积(叉乘).使用matrix时,运算符 * 用于计算矢量积,函数 multiply() 用于计算数量积. 下面是使用array时: 1. 同线性代数中矩阵乘法的定义: np.dot() np.dot(A, B):对于二维矩阵,计算真正意义上的矩阵乘积,同线性代数中矩阵乘法的定义.对于一维矩阵,计算两者的内积. 2. 对应元素相乘 element-wise product: np.multiply(), 或 * 在…
np.ceil(多维数组):对多维数组的各个数向上取整 np.floor(多维数组):对多维数组的各个数向下取整 np.expand_dims(x,axis = 0):在x的第一维度上插入一个维度,axis=1,在x的第二个维度上插入一个维度 例如: x = np.array([[1,2,3],[4,5,6]])print (x)print (x.shape) 结果: [[1 2 3] [4 5 6]](2, 3) axis = 0: y = np.expand_dims(x,axis=0)pr…