锁粒度与并发性能怎么样? 数据库的读写并发性能与锁的粒度息息相关,不管是读操作还是写操作开始运行时,都会请求相应的锁资源,如果请求不到,操作就会被阻塞.读操作请求的是读锁,能够与其它读操作共享,但是当写操作请求数据库时,它所申请的是写锁,具有排它性. MongoDB在2.2之前的版本,锁的粒度是非常粗的,它会锁住整个mongod实例.这意味着当一个数据库上的写锁被请求后,对mongod实例上管理的其它数据库的操作都会被阻塞.2.2版本降低了锁的粒度,引入了单个数据库范围的锁,也就是说读写操作的锁…
下了这本<大数据Spark企业级实战版>, 另外还有一本<Spark大数据处理:技术.应用与性能优化(全)> 先看前一篇. 根据书里的前言里面,对于阅读顺序的建议.先看最后的Scala实践三部曲吧. scala学习,我觉得这一段写的很好: object Hello{ def main(args: Array[String]): Unit = { val ret = sum(x=> x*x)(1)(2) println(ret) } def sum(f: Int => I…
基本信息 作者: Spark亚太研究院   王家林 丛书名:决胜大数据时代Spark全系列书籍 出版社:电子工业出版社 ISBN:9787121247446 上架时间:2015-1-6 出版日期:2015 年1月 开本:16 页码:812 版次:1-1 所属分类: 计算机 > 数据库 > 数据库存储与管理 编辑推荐 Life is short, you need Spark! Spark是当今大数据领域最活跃最热门的高效的大数据通用计算平台.基于RDD,Spark成功地构建起了一体化.多元化的…
作为解决方案厂商,MapGis是如何实现分布式大数据存储的呢? MapGIS在传统关系型空间数据库引擎MapGIS SDE的基础之上,针对地理大数据的特点,构建了MapGIS DataStore分布式数据库引擎,其集成整合了多种开源分布式数据库和文件系统,分别用来存储和管理关系型数据,切片型数据,实时型数据和非结构化数据,形成针对地理大数据应用场景相关的解决方案. 传统关系型数据库在存储海量矢量数据时,只能部署在单个服务器上,无法承受海量数据的存储和查询请求,尤其是对于对象个数超过千万条的复杂空…
Sqlserver 高并发和大数据存储方案 随着用户的日益递增,日活和峰值的暴涨,数据库处理性能面临着巨大的挑战.下面分享下对实际10万+峰值的平台的数据库优化方案.与大家一起讨论,互相学习提高!  案例:游戏平台. 1.解决高并发 当客户端连接数达到峰值的时候,服务端对连接的维护与处理这里暂时不做讨论.当多个写请求到数据库的时候,这时候需要对多张表进行插入,尤其一些表 达到每天千万+的存储,随着时间的积累,传统的同步写入数据的方式显然不可取,经过试验,通过异步插入的方式改善了许多,但与此同时,…
我们都知道现在大数据存储用的基本都是 Hadoop Hdfs ,但在 Hadoop 诞生之前,我们都是如何存储大量数据的呢?这次我们不聊技术架构什么的,而是从技术演化的角度来看看 Hadoop Hdfs. 我们先来思考两个问题. 在 Hdfs 出现以前,计算机是通过什么手段来存储"大数据" 的呢? 为什么会有 Hadoop Hdfs 出现呢? 在 Hadoop Hdfs 出现以前,计算机是通过什么手段来存储"大数据" 要知道,存储大量数据有三个最重要的指标,那就是速…
我们都知道现在大数据存储用的基本都是 Hdfs ,但在 Hadoop 诞生之前,我们都是如何存储大量数据的呢?这次我们不聊技术架构什么的,而是从技术演化的角度来看看 Hadoop Hdfs. 我们先来思考两个问题. 在 Hdfs 出现以前,计算机是通过什么手段来存储“大数据” 的呢? 为什么会有 Hadoop Hdfs 出现呢?在 Hdfs 出现以前,计算机是通过什么手段来存储“大数据” 要知道,存储大量数据有三个最重要的指标,那就是速度,容量,容错性.速度和容量的重要性毋庸置疑,如果容量不够大…
数据存储 mongodb from pymongo import MongoClient import os base_dir = os.getcwd() class MongoPipeline(object): # 实现保存到mongo数据库的类, collection = 'douban' # mongo 数据库的 collection 名字 def __init__(self, mongo_uri, db_name, db_user, db_pass): self.mongo_uri =…
1.1 什么大数据 具体来说,大数据技术涉及到数据的创造,存储,获取和分析,大数据的主要特点有下面几个: 数据量大.一个典型的PC机载2000年前后其存储空间可能有10GB,今天facebook一天增加的数据量就将近有500TB:一架波音737的飞机绕美国飞行一周将会产生200TB的数据:移动互联网的发展,智能手机的普及,人们每时每刻都在产生数以万计的数据. 数据变化快.高速的股票交易市场,产生的数据以微秒计算:基础设施系统,实施系统每秒都产生大量变化的日志,每秒都处理大量的并发. 数据多样性.…
1.开机启动Hadoop,输入命令:  检查相关进程的启动情况: 2.对Hadoop集群做一个测试:   可以看到新建的test1.txt和test2.txt已经成功地拷贝到节点上(伪分布式只有一个节点,如果是完全分布式,则会显示3个节点都拷贝成功).这证明HDFS工作正常,其中,hadoop dfs –put [本地地址] [hadoop目录] 代表将本地的地址目录存放到hadoop目录下:hadoop dfs –ls [文件目录] 则表示查看指定目录下的内容.更多Hadoop的常用指令请参考…