降维(一)----说说主成分分析(PCA)的源头 降维系列: 降维(一)----说说主成分分析(PCA)的源头 降维(二)----Laplacian Eigenmaps --------------------- 主成分分析(PCA) 在很多教程中做了介绍,但是为何通过协方差矩阵的特征值分解能够得到数据的主成分?协方差矩阵和特征值为何如此神奇,我却一直没弄清.今天终于把整个过程整理出来,方便自己学习,也和大家交流. 提出背景 以二维特征为例,两个特征之间可能存在线性关系的(例如这两个特征分别是运…
1. 动机一:数据压缩 第二种类型的 无监督学习问题,称为 降维.有几个不同的的原因使你可能想要做降维.一是数据压缩,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,但它也让我们加快我们的学习算法. 但首先,让我们谈论 降维是什么.作为一种生动的例子,我们收集的数据集,有许多,许多特征,我绘制两个在这里. 将数据从二维降一维: 将数据从三维降至二维: 这个例子中我们要将一个三维的特征向量降至一个二维的特征向量.过程是与上面类似的,我们将三维向量投射到一个二维的平面上,强迫使得所…
始终贯彻数据分析的一个大问题就是对数据和结果的展示,我们都知道在低维度下数据处理比较方便,因而数据进行简化成为了一个重要的技术.对数据进行简化的原因: 1.使得数据集更易用使用.2.降低很多算法的计算开销.3.去除噪音.4.使得结果易懂 这里我们关心的数据降维技术为主成分分析(PCA).在PCA中,数据原来的坐标系转换成了新的坐标系,新的坐标系是由数据本身决定的.第一个新的坐标轴的选择是原始数据中方差最大的方向,第二个新的坐标轴的选择和第一个坐标轴正交且具有最大方差方向.这个过程一直重复,重复次…
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简化数据集的技术.主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征.常常应用在文本处理.人脸识别.图片识别.自然语言处理等领域.可以做在数据预处理阶段非常重要的一环,本文首先对基本概念进行介绍,然后给出PCA算法思想.流程.优缺点等等.最后通过一个综合案例去实现应用.(本文原…
机器学习降维方法概括   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近刷题看到特征降维相关试题,发现自己了解的真是太少啦,只知道最简单的降维方法,这里列出了常见的降维方法,有些算法并没有详细推导.特征降维方法包括:Lasso,PCA,小波分析,LDA,奇异值分解SVD,拉普拉斯特征映射,SparseAutoEncoder,局部线性嵌入LLE,等距映射Isomap. 1…
本博客根据 百面机器学习,算法工程师带你去面试 一书总结归纳,公式都是出自该书. 本博客仅为个人总结学习,非商业用途,侵删. 网址 http://www.ptpress.com.cn 目录: PCA最大方差理论 PCA最小平方误差理论 在机器学习中, 数据通常需要被表示成向量形式以输入模型进行训练. 但是在对向维向量进行处理和分析时, 会极大地消耗系统资源, 甚至产生维度灾难. 因此, 对特征向量进行降维, 即用一个低维度的向量表示原始高维度的特征就显得尤为重要. PCA(Principal C…
目录 主成分分析(PCA)——以葡萄酒数据集分类为例 1.认识PCA (1)简介 (2)方法步骤 2.提取主成分 3.主成分方差可视化 4.特征变换 5.数据分类结果 6.完整代码 总结: 1.认识PCA (1)简介 数据降维的一种方法是通过特征提取实现,主成分分析PCA就是一种无监督数据压缩技术,广泛应用于特征提取和降维. 换言之,PCA技术就是在高维数据中寻找最大方差的方向,将这个方向投影到维度更小的新子空间.例如,将原数据向量x,通过构建  维变换矩阵 W,映射到新的k维子空间,通常().…
在主成分分析(PCA)原理总结中,我们对主成分分析(以下简称PCA)的原理做了总结,下面我们就总结下如何使用scikit-learn工具来进行PCA降维. 1. scikit-learn PCA类介绍 在scikit-learn中,与PCA相关的类都在sklearn.decomposition包中.最常用的PCA类就是sklearn.decomposition.PCA,我们下面主要也会讲解基于这个类的使用的方法. 除了PCA类以外,最常用的PCA相关类还有KernelPCA类,在原理篇我们也讲到…
主成分分析与白化是在做深度学习训练时最常见的两种预处理的方法,主成分分析是一种我们用的很多的降维的一种手段,通过PCA降维,我们能够有效的降低数据的维度,加快运算速度.而白化就是为了使得每个特征能有同样的方差,降低相邻像素的相关性. 主成分分析PCA PCA算法可以将输入向量转换为一个维数低很多的近似向量.我们在这里首先用2D的数据进行试验,其数据集可以在UFLDL网站的相应页面http://ufldl.stanford.edu/wiki/index.php/Exercise:PCA_in_2D…
前言: 如果学习分类算法,最好从线性的入手,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理解LDA就是很有必要的了. 谈到LDA,就不得不谈谈PCA,PCA是一个和LDA非常相关的算法,从推导.求解.到算法最终的结果,都有着相当的相似. 本次的内容主要是以推导数学公式为主,都是从算法的物理意义出发,然后一步一步最终推导到最终的式子,LDA和PCA最终的表现都是解一个矩阵特征值的问题,但是理解了如何推导,才能更深刻的理解其中的含义.本次内容要求读者有一些…