这个题想明白之后很好做,但是不好想.我根本没想出来,上网看了一下才知道怎么做... 这个题其实得数是一个等差数列,然后一点点求和就行了. 上次NOIP就是没看出来规律,这次又是,下次先打表找规律!!! 题干: Description 给出正整数n和k,计算j(n, k)=k mod + k mod + k mod + … + k mod n的值 其中k mod i表示k除以i的余数. 例如j(, )= mod + mod + mod + mod + mod =++++= Input 输入仅一行,…
Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值 其中k mod i表示k除以i的余数. 例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7 Input 输入仅一行,包含两个整数n, k. 1<=n ,k<=10^9 Output 输出仅一行,即j(n, k). Sample Input 5 3 Sample…
Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目要求: \[\sum_{i=1}^nx \% i = \] \[\sum_{i=1}^nk - i * [\dfrac{k}{i}] = \] \[n * k - \sum_{i=1}^n i * [\dfrac{k}{i}]\] 后面这一部分可以用整除分块解决. 需要注意的是.\(k\%i(i >…
1257: [CQOI2007]余数之和 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 6117  Solved: 2949[Submit][Status][Discuss] Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值 其中k mod i表示k除以i的余数. 例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 m…
题意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值其中k mod i表示k除以i的余数.例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7 题解k%i=k-\(\left\lfloor\frac{k}{i}\right\rfloor\) \(*i\),然后\(\left\lfloor\frac{k}{i}\right\rfloor…
题意 求 $\sum _{i=1}^n k \ mod \ i$($1\leq n,k\leq 10^9$). 分析 数据范围这么大 $O(n)$ 的复杂度也挺不住啊 根据取模的意义,$k \ mod \ i = k - \left \lfloor \frac{k}{i} \right \rfloor * i$, 因此可以用整除分块,注意分类讨论 $k$ 与 $n$ 的关系. #include<bits/stdc++.h> using namespace std; typedef long l…
题意: 给定n, k,求$\displaystyle \sum_{i=1}^nk\;mod\;i$ n,k<=1e9 思路: 先转化为$\displaystyle \sum_{i=1}^n(k-i\lfloor\frac{k}{i}\rfloor)=\displaystyle \sum_{i=1}^nk-\sum_{i=1}^ni\lfloor\frac{k}{i}\rfloor$ 而k/i在一定范围内是不变的,所以分块求等差数列就可以了 代码: /***********************…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 \( n\%i = n - \left \lfloor n/i \right \rfloor * i \) 注意 n<k 时当前块的右端点可能超过 n ! #include<cstdio> #include<cstring> #include<algorithm> #define ll long long using namespace std; in…
都不知道说什么好...咕咕到现在.. 求:$\sum_{i=1}^n \space k\space mod \space i$ 即求:$n*k-\sum_{i=1}^n\space \lfloor \frac{k}{i} \rfloor *i$ 我们发现,在一定范围内,$\lfloor \frac{k}{i} \rfloor$是不变的,那么此时相当于求一个等差数列... #include<cstdio> #include<iostream> #include<algorith…
BZOJ_1257_ [CQOI2007]余数之和sum_数学 题意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值. 分析:把k mod n搞成k - k/n*n; 答案就是(k+1)*k/2减去后面那一坨. 发现每段相等的k/i乘了一个等差数列. 完了. 代码: #include <stdio.h> #include <string.h> #include <algorithm> usin…