Editing a Book 搜索 + meet in the middle】的更多相关文章

我们可以发现最多只会进行5次操作. 由此我们从双向跑dfs,用一个unordered_map来保存状态,枚举一下两边的深度即可. 如果4次仍然不可行,则只有可能是5次.所以正反最多只需要搜2层 code: #include<cstdio> #include<tr1/unordered_map> #include<algorithm> #include<queue> using namespace std; using namespace std :: tr1…
折半搜索(meet in the middle) ​ 我们经常会遇见一些暴力枚举的题目,但是由于时间复杂度太过庞大不得不放弃. ​ 由于子树分支是指数性增长,所以我们考虑将其折半优化; 前言 ​ 这个知识点曾经在模拟赛中出现过,所以这里稍微提一下; ​ 讲的很浅显,但是不要D讲者; 入门 ​ dfs搜索树是指数性增长,如果将指数减少一半,就将会有量的飞跃,所以在遇见暴力枚举太大时,我们可以考虑这种算法; ​ 总体思想即,dfs搜素通常从一个点出发,遍历所有深度,那么我们考虑将深度减半,从两个点出…
搜索是\(OI\)中一个十分基础也十分重要的部分,近年来搜索题目越来越少,逐渐淡出人们的视野.但一些对搜索的优化,例如\(A\)*,迭代加深依旧会不时出现.本文讨论另一种搜索--折半搜索\((meet\ in\ the\ middle)\). 由一道例题引入:CEOI2015 Day2 世界冰球锦标赛 我们可以用以下代码解决\(n\leq 20\)的数据,时间复杂度\(O(2^n)\) void dfs(int step, int sum) { if (sum>m) return; if (st…
Meet in the middle(MITM) Tags:搜索 作业部落 评论地址 PPT中会讲的很详细 当搜索的各项互不影响(如共\(n\)个物品前\(n/2\)个物品选不选和后\(n/2\)个物品选不选互不干扰)且状态数小得可怜的时候可以考虑双向搜索(MITM) 实现非常灵活,具体看题 精髓是:用空间换时间 [x] [SPOJ4580]ABCDEF☃☃ [x] [NOI2001]方程的解数☃☃ [x] [TopCoder14580] EllysRPS☃☃☃ [x] [BZOJ4800]Ic…
[BZOJ4800][Ceoi2015]Ice Hockey World Championship Description 有n个物品,m块钱,给定每个物品的价格,求买物品的方案数. Input 第一行两个数n,m代表物品数量及钱数 第二行n个数,代表每个物品的价格 n<=40,m<=10^18 Output 一行一个数表示购买的方案数 (想怎么买就怎么买,当然不买也算一种) Sample Input 5 1000 100 1500 500 500 1000 Sample Output 8 题…
目录 Meet in the Middle 总结 1.算法模型 1.1 Meet in the Middle算法的适用范围 1.2Meet in the Middle的基本思想 1.3Meet in the Middle的算法过程 1.4Meet in the Middle的时间复杂度分析 2.代码实现 例题 [SPOJ ABCDEF] 法1: 结果合并法 法2:哈希表 法3:map 3.扩展运用 [BZOJ 4800] 冰球世界锦标赛 [POJ 1186] 方程的解数 [BZOJ 2679]…
A. 毛一琛 考虑到直接枚举的话时间复杂度很高,我们运用$meet\ in\ the\ middle$的思想 一般这种思想看似主要用在搜索这类算法中 发现直接枚举时间复杂度过高考虑枚举一半另一半通过其他算法统计,保证两边互不影响 今天的题我们考虑枚举先枚举左半部分,然后每个物品有三种取值情况 选入A集合,选入B集合,不选,系数不同 考虑完左半部分再去考虑右半部分,那么我们可以用哈系表先从将左半部分的答案统计出来 然后右半部分查询他的相反数注意去重 也可以用将两边状态都用结构体存下来 注意去重 思…
前言 若干年前看过现在又忘了.这么简单都忘 所以今天来重新复习一下. 正题 考虑这样的问题: 给定 \(n\) 个物品的价格,你有 \(m\) 块钱,每件物品限买一次,求买东西的方案数. \(n\leq 40\),\(m\leq 10^{18}\). 在看到数据范围之前,所有人的想法都是直接背包,看到数据范围后就寄了. 看样子不可用背包,那就用搜索吧. 直观的,我们考虑 \(O(2^n\times n)\) 的做法. 用 \(O(2^n)\) 的复杂度枚举每个物品是否购买,再 \(O(n)\)…
目测观看人数 \(0+0+0=0\) \(\mathrm{Meet\;in\;the\;middle}\)(简称 \(\rm MITM\)),顾名思义就是在中间相遇. 可以理解为就是起点跑搜索树基本一半的状态,终点也跑搜索树基本一半的状态,最后撞到中间,一种类似双向 DFS 的东西.优化还是不错的awa,减少了差不多一半. 时间复杂度可如下分析: 设向外搜索 \(n\) 层需要的代价为 \(k(n)\).如果不用 \(\textrm{MITM}\),那么复杂度显然是 \(\mathcal O(k…
题意 题目链接 Sol 发现abcdef是互不相关的 那么meet in the middle一下.先算出abc的,再算def的 注意d = 0的时候不合法(害我wa了两发..) #include<bits/stdc++.h> #define LL long long using namespace std; const int MAXN = 101, SS = 2e6 + 10; map<LL, LL> mp; int N; LL a[MAXN], ans; int a1[SS]…