map-reduce入门】的更多相关文章

需求说明 用Map&Reduce计算几个班级中,每个班级10岁和20岁之间学生的数量: 需求分析 学生表的字段: db.students.insert({classid:1, age:14, name:'Tom'}) 将classid随机1和2.age在8-25岁之间随机,name在3-7个字符之间随机. 数据写入 数据写入java脚本 往mrtask库中students写入1000万条数据: package org.test; import java.util.ArrayList; impor…
简单概括:Map/Reduce是分布式离线处理的一个框架. Yarn是Map/Reduce中的一个资源管理器. 一.图形说明下Map/Reduce结构: 官方示意图: 另外还可以参考这个: 流程介绍: HDFS首先会把块进行逻辑上切片处理,然后进行Map映射.一个切片对应一个Map映射. 因为文件内容有可能一个单词被切到两个文件里面,这样计算就会有问题,所以Map映射时除了第一个切片完全映射,其余的映射都会从第二行开始映射,而第一行传递给上一个Map处理. Map程序初始化会设定一个阈值,比如8…
原文地址:http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html 目的 先决条件 概述 输入与输出 例子:WordCount v1.0 源代码 用法 解释 Map/Reduce - 用户界面 核心功能描述 Mapper Reducer Partitioner Reporter OutputCollector 作业配置 任务的执行和环境 作业的提交与监控 作业的控制 作业的输入 InputSplit RecordReader 作业的…
上一节分析了Job由JobClient提交到JobTracker的流程,利用RPC机制,JobTracker接收到Job ID和Job所在HDFS的目录,够早了JobInProgress对象,丢入队列,另一个线程从队列中取出JobInProgress对象,并丢入线程池中执行,执行JobInProgress的initJob方法,我们逐步分析. public void initJob(JobInProgress job) { if (null == job) { LOG.info("Init on…
1.1函数式编程 面向过程编程:我们通过把大段代码拆成函数,通过一层一层的函数,可以把复杂的任务分解成简单的任务,这种一步一步的分解可以称之为面向过程的程序设计.函数就是面向过程的程序设计的基本单元. 函数式编程:是使用一系列函数去解决问题,函数式编程就是根据编程的范式来的出想要的结果,只要是输入时确定的,输出就是确定的. 1.2高阶函数 能把函数作为参数传入,这样的函数就称为高阶函数. 1.2.1函数即变量 以python的内置函数print()为列,调用该函数一下代码 >>> pri…
1.filter filter(function,sequence) 对sequence中的item依次执行function(item),将执行的结果为True(符合函数判断)的item组成一个list.string.tuple(根据sequence类型决定)返回. #!/usr/bin/env python # encoding: utf-8 """ @author: 侠之大者kamil @file: filter.py @time: 2016/4/9 22:03 &quo…
作者:Coldwings链接:https://www.zhihu.com/question/29936822/answer/48586327来源:知乎著作权归作者所有,转载请联系作者获得授权. 简单的说就是问题可以划分成若干单元,每个单元的计算互不相关,单元计算结果可以在可以承受的时间内合成为总结果的计算.再说直白一点:所有分治模型都可交由hadoop解决.可以说spark是功能更全面的hadoop,支持一些诸如filter.group之类的操作,但是原本思想仍是map reduce,差别不太大…
python基础——map/reduce Python内建了map()和reduce()函数. 如果你读过Google的那篇大名鼎鼎的论文“MapReduce: Simplified Data Processing on Large Clusters”,你就能大概明白map/reduce的概念. 我们先看map.map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回. 举例说明,比如我们有一个函数f(x)=…
前言 从运行我们的 Map/Reduce 程序,到结果的提交,Hadoop 平台其实做了很多事情. 那么 Hadoop 平台到底做了什么事情,让 Map/Reduce 程序可以如此 "轻易" 地实现分布式运行? Map/Reduce 任务执行总流程 经过之前的学习,我们已经知道一个 Map/Reduce 作业的总流程为: 代码编写  -->  作业配置  -->  作业提交  -->  Map任务的分配和执行  -->  处理中间结果(Shuffle)  --&…
背景: 在大数据领域, 由于各方面的原因. 有时需要自己来生成测试数据集, 由于测试数据集较大, 因此采用Map/Reduce的方式去生成. 在这小编(mumuxinfei)结合自身的一些实战经历, 具体阐述下生成测试数据集的Map/Reduce程序该如何写? 场景构造: 假设某移动电信行业的某具体业务, 其记录了通话信息(包括拨打方/接听方/通话时间点/基站 等要素). 产商是不可能提供真实的用户数据用于测试的, 但提供了基本的数据格式. 具体针对该业务场景, 我们简单规划如下: num1 v…