具体knn算法概念参考knn代码python实现上面是参考<机器学习实战>的代码,和knn的思想 # _*_ encoding=utf8 _*_ import numpy as npimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data # 导入手写体识别的数据mnist = input_data.read_data_sets("../data", one_hot=T…
使用kNN算法进行分类的原理是:从训练集中选出离待分类点最近的kkk个点,在这kkk个点中所占比重最大的分类即为该点所在的分类.通常kkk不超过202020 kNN算法步骤: 计算数据集中的点与待分类点之间的距离 按照距离升序排序 选出距离最小的kkk个点 计算这kkk个点所在类别出现的频率(次数) 返回出现频率最高的点的类别 代码的实现: 首先导入numpy模块和operator模块,建立一个数据集 from numpy import * import operator def createD…
前面一个博客我们用Scikit-Learn实现了中文文本分类的全过程,这篇博客,着重分析项目最核心的部分分类算法:朴素贝叶斯算法以及KNN算法的基本原理和简单python实现. 3.1 贝叶斯公式的推导 简单介绍一下什么是贝叶斯: 让我们从一个故事开始. 1 看着后视镜往前开车 想象这么一个场景,我开着车,经过笔直的大道,快速地往下一个路口驶去.我知道,到了下一个路口就要右转了. 这件事情很简单,我坐在驾驶室内,看到下一个路口,往右边打方向盘就好了: 突然,不管什么原因(这故事是我写的,可以安排…
邻近算法(k-NearestNeighbor) 是机器学习中的一种分类(classification)算法,也是机器学习中最简单的算法之一了.虽然很简单,但在解决特定问题时却能发挥很好的效果.因此,学习kNN算法是机器学习入门的一个很好的途径. kNN算法的思想非常的朴素,它选取k个离测试点最近的样本点,输出在这k个样本点中数量最多的标签(label).我们假设每一个样本有m个特征值(property),则一个样本的可以用一个m维向量表示: X =( x1,x2,... , xm ),  同样地…
1 KNN 算法 knn,k-NearestNeighbor,即寻找与点最近的k个点. 2 KNN numpy实现 效果: k=1 k=2 3 numpy 广播,聚合操作. 这里求距离函数,求某点和集合中所有点的距离 def getDistance(points): return np.sum((points[:,np.newaxis,:]-points[np.newaxis,:,:])**2,axis=-1) points[:,np.newaxis,:]-points[np.newaxis,:…
1 KNN算法 1.1 KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类对应的关系.输入没有标签的数据后,将新数据中的每个特征与样本集中数据对应的特征进行比较,提取出样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k近邻算法中k的出处,通常k是不大于20的整数.最后选择k个最相似数据中出现次数最多的分类作为新数据…
一.kNN算法概述 kNN算法是用来分类的,其依据测量不同特征值之间的距离,其核心思想在于用距离目标最近的k个样本数据的分类来代表目标的分类(这k个样本数据和目标数据最为相似).其精度高,对异常值不敏感,并且无数据输入假定,但是计算复杂度和空间复杂度均高,更多的适用于数值型和标称型数据. kNN算法的工作原理:存在一个训练样本集,并且其中的每个数据都存在标签,因此样本集中的数据与其所属分类的对应关系是明确的.输入没有标签的新数据后,提取新数据中的特征并与样本集中数据对应的特征进行比较,然后算法提…
姊妹篇: 深入浅出KNN算法(一) 原理介绍 上次介绍了KNN的基本原理,以及KNN的几个窍门,这次就来用sklearn实践一下KNN算法. 一.Skelarn KNN参数概述 要使用sklearnKNN算法进行分类,我们需要先了解sklearnKNN算法的一些基本参数,那么这节就先介绍这些内容吧. def KNeighborsClassifier(n_neighbors = 5, weights='uniform', algorithm = '', leaf_size = '30', p =…
一.KNN算法介绍 邻近算法,或者说K最邻近(KNN,K-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是K个最近的邻居的意思,说的是每个样本都可以用它最接近的K个邻近值来代表.近邻算法就是将数据集合中每一个记录进行分类的方法 . k近邻法是一种基本的分类和回归方法,是监督学习方法里的一种常用方法.k近邻算法假设给定一个训练数据集,其中的实例类别已定.分类时,对新的实例,根据其k个最近邻的训练实例类别,通过多数表决等方式进行预测. 二.KNN算法核…
声明:作者:会心一击 出处:http://www.cnblogs.com/lijingchn/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利. 1. K-NN算法简介 K-NN算法 ( K Nearest Neighbor, K近邻算法 ), 是机器学习中的一个经典算法, 比较简单且容易理解. K-NN算法通过计算新数据与训练数据特征值之间的距离, 然后选取 K (K>=1) 个距离最近的邻居进行分类或者回归.…