流式处理框架storm浅析(上篇)】的更多相关文章

本文来自网易云社区 作者:汪建伟 前言 前一段时间参与哨兵流式监控功能设计,调研了两个可以做流式计算的框架:storm和spark streaming,我负责storm的调研工作.断断续续花了一周的时间看了官网上的doc和网络上的一些资料.我把所学到的总结成一个文档,发出来给对storm感兴趣的同事做入门引导. storm背景 随着互联网的更进一步发展,从Portal信息浏览型到Search信息搜索型到SNS关系交互传递型,以及电子商务.互联网旅游生活产品等将生活中的流通环节在线化.对效率的要求…
本文来自网易云社区 作者:汪建伟 举个栗子 1 实现的目标 设计一个系统,来实现对一个文本里面的单词出现的频率进行统计. 2 设计Topology结构: 这是一个简单的例子,topology也非常简单.整个topology如下: 整个topology分为三个部分: WordReader:数据源,负责发送sentence WordNormalizer:负责将sentence切分 Wordcounter:负责对单词的频率进行累加 3 代码实现 1. 构建maven环境,添加storm依赖 <repo…
Storm0.9.0发布通知中文翻译版(2013/12/10 by 富士通邵贤军 有错误一定告诉我 shaoxianjun@hotmail.com^_^) 我们很高兴宣布Storm 0.9.0已经成功发布,你可以从the downloads page下载. 本次发布对茁壮成长的Storm来说是一次巨大的进步. 我们追加了一些新特性,你会在下面看到详细的介绍, 此外这次发布的另一个着重点是修复了大量跟稳定性相关的 bug. 虽然很多用户已经在自己的环境中把0.9.x版本的Storm成功运行起来,但…
简介: Storm是一个免费开源.分布式.高容错的实时计算系统.它与其他大数据解决方案的不同之处在于它的处理方式.Hadoop 在本质上是一个批处理系统,数据被引入 Hadoop 文件系统 (HDFS) 并分发到各个节点进行处理.当处理完成时,结果数据返回到 HDFS 供始发者使用.Hadoop的高吞吐,海量数据处理的能力使得人们可以方便地处理海量数据.但是,Hadoop的缺点也和它的优点同样鲜明——延迟大,响应缓慢,运维复杂.Storm就是为了弥补Hadoop的实时性为目标而被创造出来.Sto…
Storm是一个分布式的.高容错的实时计算系统.Storm适用的场景: Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中. 由于Storm的处理组件都是分布式的,而且处理延迟都极低,所以可以Storm可以做为一个通用的分布式RPC框架来使用.(实时计算?) Storm集群架构 Storm集群采用主从架构方式,主节点是Nimbus,从节点是Supervisor,有关调度相关的信息存储到ZooKeeper集群中,架构如下图所示 Nimbus:Storm集群的Master…
Kafka Stream-Spark Streaming-Storm流式计算框架比较选型 elasticsearch-head Elasticsearch-sql client NLPchina/elasticsearch-sql: Use SQL to query Elasticsearch kafka stream vs spark streaming vs storm_百度搜索 [翻译]Kafka Streams简介: 让流处理变得更简单 - devos - 博客园 kafka strea…
摘要 Faust是用python开发的一个分布式流式处理框架.在一个机器学习应用中,机器学习算法可能被用于数据流实时处理的各个环节,而不是仅仅在推理阶段,算法也不仅仅局限于常见的分类回归算法,而是会根据业务需要执行一个十分差异化的任务, 例如:在我们的时序异常检测应用中, 前处理阶段的变点检测算法.这就要求流处理框架除了具备进行常规的转换聚合操作之外,可以支持更加强大的任意自定义逻辑和更加复杂的自定义状态,能够更好地与原生的python算法代码紧密结合在一起.在主流的flink, spark s…
伴随着信息科技日新月异的发展,信息呈现出爆发式的膨胀,人们获取信息的途径也更加多样.更加便捷,同时对于信息的时效性要求也越来越高.举个搜索场景中的例子,当一个卖家发布了一条宝贝信息时,他希望的当然是这个宝贝马上就可以被卖家搜索出来.点击.购买啦,相反,如果这个宝贝要等到第二天或者更久才可以被搜出来,估计这个大哥就要骂娘了.再举一个推荐的例子,如果用户昨天在淘宝上买了一双袜子,今天想买一副泳镜去游泳,但是却发现系统在不遗余力地给他推荐袜子.鞋子,根本对他今天寻找泳镜的行为视而不见,估计这哥们心里就…
Hadoop的高吞吐,海量数据处理的能力使得人们可以方便地处理海量数据.但是,Hadoop的缺点也和它的优点同样鲜明——延迟大,响应缓慢,运维复杂. 有需求也就有创造,在Hadoop基本奠定了大数据霸主地位的时候,很多的开源项目都是以弥补Hadoop的实时性为目标而被创造出来.而在这个节骨眼上Storm横空出世了. Storm带着流式计算的标签华丽丽滴出场了,看看它的一些卖点: 分布式系统:可横向拓展,现在的项目不带个分布式特性都不好意思开源. 运维简单:Storm的部署的确简单.虽然没有Mon…
转载自http://www.cnblogs.com/langtianya/p/5199529.html 伴随着信息科技日新月异的发展,信息呈现出爆发式的膨胀,人们获取信息的途径也更加多样.更加便捷,同时对于信息的时效性要求也越来越高.举个搜索场景中的例子,当一个卖家发布了一条宝贝信息时,他希望的当然是这个宝贝马上就可以被卖家搜索出来.点击.购买啦,相反,如果这个宝贝要等到第二天或者更久才可以被搜出来,估计这个大哥就要骂娘了.再举一个推荐的例子,如果用户昨天在淘宝上买了一双袜子,今天想买一副泳镜去…