一.Abstract 从近期对unsupervised learning 的研究得到启发,在large-scale setting 上,本文把unsupervised learning 与supervised learning结合起来,提高了supervised learning的性能.主要是把autoencoder与CNN结合起来 二.Key words: SAE;SWWAE; reconstruction:encoder:decoder;VGG-16;Alex-Net 三. Motivati…
Self-Normalizing Neural Networks ,长达93页的附录足以成为吸睛的地方(给人感觉很厉害), 此paper提出了新的激活函数,称之为 SELUs ,其具有normalization的功能. 给人感觉只是在全连接层有效果,在CNN和RNN中貌似没有提及有效果 Abstract: CNN在视觉的多个领域有很好的表现,然而 feed-forward neural networks(FNNs) (wiki上解释就是传统的前向传播网络)不能提取many levels of a…
3 Streaming Graph Neural Networks link:https://dl.acm.org/doi/10.1145/3397271.3401092 Abstract 本文提出了一种新的动态图神经网络模型DGNN,它可以随着图的演化对动态信息进行建模.特别是,该框架可以通过捕获: 1.边的序列信息, 2.边之间的时间间隔, 3.信息传播耦合性 来不断更新节点信息. Conclusion 在本文中,提出了一种用于动态图的新图神经网络架构DGNN.该架构有两个组件构成:更新组件…
要实现的部分为:forward prop, softmax函数的cost function,每一层的gradient,以及penalty cost和gradient. forwad prop forward prop是输入sample data,使sample data通过神经网络后得到神经网络输出的过程. 以分类问题来说,不同层的输入和输出如下表所示: 层 输入 输出 输入层 sample data feature map 隐藏层 feature map feature map 输出层 fea…
About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep learning engineers are highly sought after, and mastering deep learning will give you numerous new career opportunities. Deep learning is also a new "s…
CS231n Winter 2016: Lecture 5: Neural Networks Part 2 CS231n Winter 2016: Lecture 6: Neural Networks Part 3 by Andrej Karpathy 本章节主要讲解激活函数,参数初始化以及周边的知识体系. Ref: <深度学习>第八章 - 深度模型中的优化 Overview 1. One time setup activation functions, preprocessing, weig…
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ An Intuitive Explanation of Convolutional Neural Networks Posted on August 11, 2016 by ujjwalkarn What are Convolutional Neural Networks and why are they important? Convolutional Neural…
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理跟踪问题.众所周知,CNN在很多视觉领域都是如鱼得水,唯独目标跟踪显得有点“慢热”,这主要是因为CNN的训练需要海量数据,纵然是在ImageNet 数据集上微调后的model 仍然不足以很好的表达要跟踪地物体,因为Tracking问题的特殊性,至于怎么特殊的,且听细细道来. 目标跟踪之所以很少被 C…
How to Use Convolutional Neural Networks for Time Series Classification 2019-10-08 12:09:35 This blog is from: https://towardsdatascience.com/how-to-use-convolutional-neural-networks-for-time-series-classification-56b1b0a07a57 Introduction A large am…
本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习任务都要求能处理包含丰富的元素间关联关系的图数据,例如物理系统建模.疾病分类以及文本和图像等非结构数据的学习等.图形神经网络(GNNs)是一种连接模型,通过图形节点之间的消息传递捕获图形的依赖性. 图(Graph)是一种对一组对象(node)及其关系(edge)进行建模的数据结构.由于图结构的强大表示能力,近…