本系列笔记内容参考来源为李航<统计学习方法> EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计或极大后验概率估计.迭代由 (1)E步:求期望 (2)M步:求极大 组成,称为期望极大算法. EM算法引入 EM算法是通过不断求解下界的极大化逼近求解对数似然函数极大化的算法. EM在监督学习中的应用 收敛性 EM算法在高斯混合模型学习中的应用 高斯混合模型 高斯混合模型参数估计的EM算法 EM算法的推广 EM算法还可解释为F函数的极大-极大算法,基于这个解释有若干变形与推广. 首先…
概述 EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计. EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求极大( maximization ),所以这一算法称为期望极大算法(expectation maximization algorithm),简称EM算法.  EM算法的引入 一般地,用Y表示观测随机变量的数据,Z表示隐随机变量的数据.Y和Z连在一起称为完全数据( complete-data…
本文,意在说明<统计学习方法>第九章EM算法的三硬币例子,公式(9.5-9.6如何而来) 下面是(公式9.5-9.8)的说明, 本人水平有限,怀着分享学习的态度发表此文,欢迎大家批评,交流.感谢您的阅读.欢迎转载本文,转载时请附上本文地址:http://www.cnblogs.com/Dzhouqi/p/3203776.html另外:欢迎访问我的博客 http://www.cnblogs.com/Dzhouqi/…
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域的基础,比如隐式马尔科夫算法(HMM),LDA主题模型的变分推断算法等等.本文对于EM算法,我们主要从以下三个方向学习: 1,最大似然 2,EM算法思想及其推导 3,GMM(高斯混合模型) 1,最大似然概率 我们经常会从样本观察数据中,找到样本的模型参数.最常用的方法就是极大化模型分布的对数似然函数.怎么理解呢?下面看我一一道来. 假设我们需要调查我们学习的男生和女生的身高分布.你…
提出混合模型主要是为了能更好地近似一些较复杂的样本分布,通过不断添加component个数,能够随意地逼近不论什么连续的概率分布.所以我们觉得不论什么样本分布都能够用混合模型来建模.由于高斯函数具有一些非常有用的性质.所以高斯混合模型被广泛地使用. GMM与kmeans相似,也是属于clustering,不同的是.kmeans是把每一个样本点聚到当中一个cluster,而GMM是给出这些样本点到每一个cluster的概率.每一个component就是一个聚类中心. GMM(Gaussian Mi…
K近邻法(K-nearest neighbor,k-NN),这里只讨论基于knn的分类问题,1968年由Cover和Hart提出,属于判别模型 K近邻法不具有显式的学习过程,算法比较简单,每次分类都是根据训练集中k个最近邻,通过多数表决的方式进行预测.所以模型需要保留所有训练集数据,而象感知机这样的模型只需要保存训练后的参数即可,训练集不需要保留 K近邻算法 K近邻法三要素 和其他统计学习方法不同的,K近邻法的三要素是,k值的选择,距离度量和分类决策规则 距离度量 首先如何定义"近"?…
1.EM算法是含有隐变量的变量的概率模型极大似然估计或极大后验概率估计的迭代算法,含有隐变量的概率模型的数据表示为$P(Y,Z|\theta)$.这里,$Y$是观测变量的数据,$Z$是隐变量的数据,$\theta$是模型参数.EM算法通过迭代求解观测数据的对数似然函数$L(\theta)=logP(Y|\theta)$的极大化,实现极大似然估计.每次迭代包括两步:E步,求期望,即求$logP(Y|\theta)$关于$P(Y|\theta^{(i)})$的期望: $Q(\theta,\theta…
极大似然估计 考虑一个高斯分布\(p(\mathbf{x}\mid{\theta})\),其中\(\theta=(\mu,\Sigma)\).样本集\(X=\{x_1,...,x_N\}\)中每个样本都是独立的从该高斯分布中抽取得到的,满足独立同分布假设. 因此,取到这个样本集的概率为: \[\begin{aligned} p(X\mid{\theta}) &= \prod_{i=1}^Np(x_i\mid\theta) \end{aligned}\] 我们要估计模型参数向量\(\theta\)…
k近邻法(k-nearest neighbor,k-NN) 输入:实例的特征向量,对应于特征空间的点:输出:实例的类别,可以取多类. 分类时,根据其k个最近邻的训练实例的类别,通过多数表决等方式进行预测. 实例类别已定,不具有显式的学习过程.k近邻法实际上利用训练数据集对特征 向量空间进行划分,并作为其分类的"模型". 三个基本要素:k值的选择.距离度量及分类决策规则.   KDtree 实现k近邻法时,主要考虑的问题是如何对训练数据进行快速k近邻搜索. k近邻法最简单的实现方法是线性…
AdaBoost算法 基本思想是,对于一个复杂的问题,单独用一个分类算法判断比较困难,那么我们就用一组分类器来进行综合判断,得到结果,"三个臭皮匠顶一个诸葛亮" 专业的说法, 强可学习(strongly learnable),存在一个多项式算法可以学习,并且准确率很高 弱可学习(weakly learnable),存在一个多项式算法可以学习,但准确率略高于随机猜测 并且可以证明强可学习和弱可学习是等价的 那么发现一个弱可学习算法是很容易的,如果将弱可学习算法boosting到强可学习算…
KNN算法 基本模型:给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例.这k个实例的多数属于某个类,就把输入实例分为这个类. KNN没有显式的学习过程. KNN使用的模型实际上对应于特征空间的划分.特征空间中,对每个训练实例点\(x_i\),距离该点比其它点更近的所有点组成一个区域,叫作单元(cell).每个训练实例拥有一个单元.所有的训练实例点的单元构成对特征空间的一个划分.如下图所示. 三要素:KNN模型由三个基本要素--距离度量,K值选择,分类决策决定.当三要…
logistic distribution 设X是连续随机变量,X服从逻辑斯谛分布是指X具有下列分布函数和密度函数: 式中,μ为位置参数,γ>0为形状参数. 密度函数是脉冲函数 分布函数是一条Sigmoid曲线(sigmoid curve)即为阶跃函数     二项逻辑斯谛回归模型 二项逻辑斯谛回归模型是如下的条件概率分布 x∊Rn是输入,Y∊{0,1}是输出,w∊Rn和b∊R是参数, w称为权值向量,b称为偏置,w·x为w和x的内积. 可以求得P(Y=1|x)和P(Y=0|x). 逻辑斯谛回归…
EM算法(Expectation Maximization Algorithm) 1. 前言   这是本人写的第一篇博客(2013年4月5日发在cnblogs上,现在迁移过来),是学习李航老师的<统计学习方法>书以及斯坦福机器学习课Andrew Ng的EM算法课后,对EM算法学习的介绍性笔记,如有写得不恰当或错误的地方,请指出,并多多包涵,谢谢.另外本人数学功底不是很好,有些数学公式我会说明的仔细点的,如果数学基础好,可直接略过. 2.基础数学知识   在正式介绍EM算法之前,先介绍推导EM算…
把这n个{试验结果来自B的概率}求和得到期望,平均后,得到B出正面的似然估计,同理有p和q. 重复迭代,直到收敛为止 http://blog.csdn.net/junnan321/article/details/8483343/ http://blog.csdn.net/zouxy09/article/details/8537620 http://www.hankcs.com/ml/em-algorithm-and-its-generalization.html http://www.cnblo…
EM算法 作者:樱花猪   摘要: 本文为七月算法(julyedu.com)12月机器学习第十次次课在线笔记.EM算法全称为Expectation Maximization Algorithm,既最大期望算法.它是一种迭代的算法,用于含有隐变量的概率参数模型的最大似然估计和极大后验概率估计.EM算法经常用于机器学习和机器视觉的聚类领域,是一个非常重要的算法.而EM算法本身从使用上来讲并不算难,但是如果需要真正的理解则需要许多知识的相互串联. 引言:      EM算法是机器学习十大经典算法之一.…
# coding:utf-8 import numpy as np def qq(y,alpha,mu,sigma,K,gama):#计算Q函数 gsum=[] n=len(y) for k in range(K): gsum.append(np.sum([gama[j,k] for j in range(n)])) return np.sum([g*np.log(ak) for g,ak in zip(gsum,alpha)])+\ np.sum([[np.sum(gama[j,k]*(np.…
1 EM算法的引入1.1 EM算法1.2 EM算法的导出2 EM算法的收敛性3EM算法在高斯混合模型的应用3.1 高斯混合模型Gaussian misture model3.2 GMM中参数估计的EM算法4 EM推广4.1 F函数的极大-极大算法 期望极大值算法(expectation maximizition algorithm,EM).是一种迭代算法,1977年由Dempster总结提出,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计或极大后验估计.EM算法分为…
前言:本文主要介绍PLSA及EM算法,首先给出LSA(隐性语义分析)的早期方法SVD,然后引入基于概率的PLSA模型,其参数学习采用EM算法.接着我们分析如何运用EM算法估计一个简单的mixture unigram 语言模型和混合高斯模型GMM的参数,最后总结EM算法的一般形式及运用关键点.对于改进PLSA,引入hyperparameter的LDA模型及其Gibbs Sampling参数估计方法放在本系列后面的文章LDA及Gibbs Samping介绍. 1 LSA and SVD LSA(隐性…
Mixtures of Gaussian 这一讲,我们讨论利用EM (Expectation-Maximization)做概率密度的估计.假设我们有一组训练样本x(1),x(2),...x(m),因为是unsupervised的学习问题,所以我们没有任何y的信息. 我们希望利用一个联合分布p(x(i),z(i))=p(x(i)|z(i))p(z(i))来拟合这些数据, 其中z(i)∼Multinomial(ϕ) (ϕj⩾0, ∑kj=1ϕj=1,参数ϕj给出了概率p(z(i)=j)),并且 x(…
1 数学基础 在实际中,最小化的函数有几个极值,所以最优化算法得出的极值不确实是否为全局的极值,对于一些特殊的函数,凸函数与凹函数,任何局部极值也是全局极致,因此如果目标函数是凸的或凹的,那么优化算法就能保证是全局的. 凸集:在凸几何中,凸集(convex set)是在凸组合下闭合的仿射空间的子集.更具体地说,在欧氏空间中,凸集是对于集合内的每一对点,连接该对点的直线段上的每个点也在该集合内.例如,立方体是凸集,但是任何中空的或具有凹痕的例如月牙形都不是凸集.特别的,凸集,实数R上(或复数C上)…
一.EM算法是什么? EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计. 作用:简单直白的说,估计参数 是一种生成模型 (1)用在概率模型中 (2)含有隐变量 (3)用极大似然估计方法估计参数 个人理解,概率模型中的一些参数,通常是一些概率: (1)如果概率模型中的变量全部可观测,那可以统计各个变量出现的次数,然后可以求取频率,用频率估计概率 (2)如果概率模型中存在着不可观测的隐变量,直接求频率可能会不可行,此时采用EM算法来求取参数. 按照什么标准极大化参数呢? 用Y表示观…
EM也称期望极大算法(Expectation Maximization),是一种用来对含有隐含变量的概率模型进行极大似然估计的迭代算法.该算法可应用于隐马尔科夫模型的参数估计. 1.含有隐含参数的概率模型举例? 三硬币模型:A.B.C三枚硬币,这些硬币投出正面的概率分别为π.p.q.进行如下硬币实验,先投硬币A,如果为正面则投硬币B,如果为反面则投硬币C.最终出现的正面则记为1,出现反面则记为0:独立的重复n次实验(取n=10),出现的结果如下: {1,1,0,1,0,1,0,1,1} 假设只能…
  EM算法是一种迭代算法,是一种用于计算包含隐变量概率模型的最大似然估计方法,或极大后验概率.EM即expectation maximization,期望最大化算法. 1. 极大似然估计   在概率模型中,若已知事件服从的分布或者其他概率模型的参数,那么我们可以通过计算得到某事件发生的概率.而在估计中,这些变成了方向过程:已知一组数据发生的结果,相当于获得了经验概率,通过这组数据假设模型服从什么分布,再通过经验概率求解模型参数.   比如统计学校学生身高服从的概率分布,抽样1000人得到他们的…
EM算法与高斯混合模型 前言 EM算法是一种用于含有隐变量的概率模型参数的极大似然估计的迭代算法.如果给定的概率模型的变量都是可观测变量,那么给定观测数据后,就可以根据极大似然估计来求出模型的参数,比如我们假设抛硬币的正面朝上的概率为p(相当于我们假设了概率模型),然后根据n次抛硬币的结果就可以估计出p的值,这种概率模型没有隐变量,而书中的三个硬币的问题(先抛A然后根据A的结果决定继续抛B还是C),这种问题中A的结果就是隐变量,我们只有最后一个硬币的结果,其中的隐变量无法观测,所以这种无法直接根…
EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计.EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求极大(Maximization). EM算法的引入 给一些观察数据,可以使用极大似然估计法,或贝叶斯估计法估计模型参数.但是当模型含有隐变量时,就不能简单地使用这些方法.有些时候,参数的极大似然估计问题没有解析解,只能通过迭代的方法求解,EM算法就是可以用于求解这个问题的一种迭代算法. EM算法 输…
最近感觉对EM算法有一点遗忘,在表述的时候,还是有一点说不清,于是重新去看了这篇<CS229 Lecture notes>笔记. 于是有了这篇小札. 关于Jensen's inequality不等式: Corollary(推论): 如果函数f(x)为凸函数,那么在 f(x) 上任意两点X1,X2所作割线一定在这两点间的函数图象的上方,即:    其中t表示[x1,x2]的位置 举例子: 当t=1/2 ;  1/2*f(x1) + 1/2*f(x2) >= f( 1/2*x1 + 1/2*…
作者:桂. 时间:2017-05-13  14:19:14 链接:http://www.cnblogs.com/xingshansi/p/6847334.html . 前言 内容主要是CART算法的学习笔记. CART算法是一个二叉树问题,即总是有两种选择,而不像之前的ID3以及C4.5B可能有多种选择.CART算法主要有回归树和分类树,二者常用的准则略有差别:回归树是拟合问题,更关心拟合效果的好坏,此处用的是均方误差准则; 分类树是分类问题,更像是离散变量的概率估计,用与熵类似的Gini系数进…
EM 算法所面对的问题跟之前的不一样,要复杂一些. EM 算法所用的概率模型,既含有观测变量,又含有隐变量.如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法,或贝叶斯估计法来估计模型参数,但是,当模型含有隐变量时,情况就复杂一些,相当于一个双层的概率模型,要估计出两层的模型参数,就需要换种方法求解.EM 算法是通过迭代的方法求解. 监督学习是由训练数据 {(x(1),y(1)),(x(2),y(2)),...,(x(m),y(m))} 学习条件概率分布 P(Y|X) 或决策…
本系列笔记内容参考来源为李航<统计学习方法> k近邻是一种基本分类与回归方法,书中只讨论分类情况.输入为实例的特征向量,输出为实例的类别.k值的选择.距离度量及分类决策规则是k近邻法的三个基本要素. k近邻算法 给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入实例分为这个类. k近邻法没有显示的学习过程. k近邻模型 距离度量 一般为欧式距离,Lp距离.Minkowski距离等 由不同的距离度量所确定的最近邻点是不同的. 式…
转载请注明出处: http://www.cnblogs.com/gufeiyang 首先考虑这么一个问题.操场东边有100个男生,他们的身高符合高斯分布.操场西边有100个女生,她们的身高也符合高斯分布. 如果告诉了男生的身高,我们很容易用极大似然估计求出正态分布的参数. 同理,给出了女生的身高,我们也很容易得到高斯分布的参数. 接下来事情发生了, 男生跑入女生队伍中, 然后统计了200个人的身高,但是却不知道每个身高是男的还是女生的. 这样的话就很纠结了. 如果我们要是知道了每个人的性别改多好…