首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
CF 757E Bash Plays with Functions——积性函数+dp+质因数分解
】的更多相关文章
CF 757E Bash Plays with Functions——积性函数+dp+质因数分解
题目:http://codeforces.com/contest/757/problem/E f0[n]=2^m,其中m是n的质因子个数(种类数).大概是一种质因数只能放在 d 或 n/d 两者之一. 然后应该发现因为 f0 是积性的,所以 fr 也是积性的!因为是卷积得来的. 这样就能把每个质因数分开.对于每种质因数考虑 fr 的转移,则 f [ r ][ p^k ] = sigma(i:0~k) ( f [ r-1 ][ p^i ] ) . 应该发现 f0 里每种质因数的值只和其次数有关,从…
CF 757 E Bash Plays with Functions —— 积性函数与质因数分解
题目:http://codeforces.com/contest/757/problem/E 首先,f0(n)=2m,其中 m 是 n 的质因数的种类数: 而且 因为这个函数和1卷积,所以是一个积性函数,就可以每个质因子单独考虑: 而 f0(pq) = 2,对于每个质因子都一样! 所以可以 DP 预处理 而fr(n) = fr(p1e1) * fr(p2e2) * ... * fr(pqeq)fr(n) = dp[r][e1] * dp[r][e2] * ... * dp[r][eq] 学到了质…
Codeforces757E.Bash Plays With Functions(积性函数 DP)
题目链接 \(Description\) q次询问,每次给定r,n,求\(F_r(n)\). \[ f_0(n)=\sum_{u\times v=n}[(u,v)=1]\\ f_{r+1}(n)=\sum_{u\times v=n}\frac{f_r(u)+f_r(v)}{2}\] \(Solution\) 首先将\(f_r\)的式子化为 \[ f_{r+1}(n)=\sum_{d|n}f_r(d)\] 即\(f_{r+1}(n)\)为\(f_r(n)\)与\(g(n)=1\)的狄利克雷卷积.…
Codeforces E. Bash Plays with Functions(积性函数DP)
链接 codeforces 题解 结论:\(f_0(n)=2^{n的质因子个数}\)= 根据性质可知\(f_0()\)是一个积性函数 对于\(f_{r+1}()\)化一下式子 对于 \[f_{r+1} = \sum_{d|n}f_r(d)\] \(f_r+1\)可以看做\(f_r()\)和\(g(d)\)的狄利克雷卷积因为\(f_0()\)是积性函数,\(g(d)\)也是积性函数,由卷积性质得\(f_{r+1}()\)也是积性函数,那么\(f_r\)同理 对于\(n\)质因数分解得到: \[n=…
Bash Plays with Functions CodeForces - 757E (积性函数dp)
大意: 定义函数$f_r(n)$, $f_0(n)$为pq=n且gcd(p,q)=1的有序对(p,q)个数. $r \ge 1$时, $f_r(n)=\sum\limits_{uv=n}\frac{f_{r-1}(u)+f_{r-1}(v)}{2}$. $q$组询问, 求$f_r(n)$的值模1e9+7. 显然可以得到$f_0(n)=2^{\omega(n)}$, 是积性函数. 所以$f_r=f_{r-1}*1$也为积性函数, 然后积性函数$dp$即可. 问题就转化为对每个素数$p$, 求$dp…
Makoto and a Blackboard CodeForces - 1097D (积性函数dp)
大意: 初始一个数字$n$, 每次操作随机变为$n$的一个因子, 求$k$次操作后的期望值. 设$n$经过$k$次操作后期望为$f_k(n)$. 就有$f_0(n)=n$, $f_k(n)=\frac{\sum\limits_{d|n}{f_{k-1}(d)}}{\sigma_0(n)}, k>0$. 显然$f_k(n)$为积性函数, $dp$算出每个素因子的贡献即可. #include <iostream> #include <sstream> #include <a…
[Codeforces 757E] Bash Plays with Functions (数论)
题目链接: http://codeforces.com/contest/757/problem/E?csrf_token=f6c272cce871728ac1c239c34006ae90 题目: 题解: $f_0(n) = 2^{n的不同质因子的个数}$ $ f_r(n) = \sum_{d|n}f_{r-1}(d)$ $f_0$是积性函数 , $f_r = f_0 * Id^r (1) $也是积性函数 , 所以只需要求$f_r(p^k)$就行了 $f_r(p^k)$与p无关 , $f_0(p^…
D. Makoto and a Blackboard(积性函数+DP)
题目链接:http://codeforces.com/contest/1097/problem/D 题目大意:给你n和k,每一次可以选取n的因子代替n,然后问你k次操作之后,每个因子的期望. 具体思路:对于给定的n,我们可以将n转换为,n=p1^(k1)*p2^(k2)*p3^(k3)......,然后我们求期望的时候,我们可以求每个因子的期望,然后再将每个因子的期望相乘就可以了(积性函数的性质). 然后我们使用一个dp数组,dp[i][j]代表某一个因子,经过i次操作,出现j次的概率. 数学期…
Problem : 这个题如果不是签到题 Asm.Def就女装(积性函数dp
https://oj.neu.edu.cn/problem/1460 思路:若n=(p1^a1)*(p2^a2)...(pn^an),则f(n,0)=a1*a2*...*an,显然f(n,0)是积性函数,对于f(x,y)可以看出他是f(x,y-1)与自身进行狄利克雷卷积得到的结果,所以f(x,y)也是积性函数.因此,只要对n质因子分解,然后与预理出次方的dp值即可.注意积性函数的概念中a,b必须互质! #include<bits/stdc++.h> #define int long long…
【codeforces 757E】Bash Plays with Functions
[题目链接]:http://codeforces.com/problemset/problem/757/E [题意] 给你q个询问; 每个询问包含r和n; 让你输出f[r][n]; 这里f[0][n]是n分解成两个数u,v的乘积的个数; 这里u和v互质; 而f[r][n]当r>0时,有个递推式; [题解] 那个递推式等价于 即n的所有因子x的f[r][x]的和; 这里需要知道; f[0][n]=2n的不同质因子个数 且容易得到 当a和b互质的时候,f[0][a*b]=f[0][a]*f[0][b…