洛谷 P3328 【[SDOI2015]音质检测】】的更多相关文章

BZOJ4085: [Sdoi2015]音质检测 由于这题太毒了,导致可能会被某些人卡评测,于是成了一道权限题... 本蒟蒻表示没钱氪金... 但是可以去洛谷/Vijos搞搞事... 但是洛谷上只能评测,题面暂时不全... 然而Vijos上数据范围不对,应该是洛谷上的数据范围... 所以没钱氪金就凑合着看吧... 这里附上Vijos的题面. 1958 音质检测 描述 万老板希望在新的智能音乐播放设备IPOOD中,实现对波文件音质性能的评定. 离散的波文件被考虑为长度为N的整数序列:$A_1,A_…
题目:洛谷P3324 [SDOI2015]星际战争 思路: 类似<导弹防御塔>,因为题目保证有解,花费时间小于最终答案时一定无法消灭所有敌人,只要花费时间大于等于最终答案都可以消灭所有敌人,答案满足单调性,考虑二分答案. 二分答案后,转化为判定性问题.当总时间固定,每件武器的总伤害量就确定了. 于是可以按网络流建模:把武器和敌人分成两部分,从源点s向武器连边,容量为该武器可以输出的总伤害量(当前二分到的时间time*该武器的dps):每件武器向可以它攻击到的敌人连边,容量为inf:每个敌人向汇…
LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \(n,m \leq 5 \times 10^4\). 抛出一个引理:\(d(ij)=\sum\limits_{x|i}\sum\limits_{y|j}[\gcd(x,y)=1]\),该定理将在这篇博客结束证明. 知道这个定理之后,就可以按照套路开始推式子了: \[\begin{aligned}&an…
这题我做的好麻烦啊... 一开始想分块来着,后来发现可以直接线段树 首先考虑一个性质,我们如果有数列的相邻两项f[i]和 f[i+1]那么用这两项向后推k项其线性表示系数一定(表示为f[i+k]=a∗f[i]+b∗f[i+1]+c的形式),那么这样我们预处理这些系数,注意到维护的是一个乘积的形式,那么我们要维护这个必须得维护8个量,将其写成3 * 3矩阵的形式转移会比较科学,注意a=0的特判. 说实话网上有些做法感觉很不科学啊... 比如很多人初始化线段树的时候都暴力求的f函数,感觉不太科学啊.…
Portal Description 共\(T(T\leq5\times10^4)\)组数据.给出\(n,m(n,m\leq5\times10^4)\),求\[\sum_{i=1}^n\sum_{j=1}^m\sigma_0(ij)\] Solution 首先有结论:\(\sigma_0(xy)=\sum_{d_1|x}\sum_{d_2|y}[gcd(d_1,d_2)=1]\).下面先证明一下这个结论. 将\(x,y\)分解质因数,得到\(x=\prod_{i=1}^kp_i^{a_i}\),…
无意中刷st表题看到的题目(抄模板),一看到题目,,,没想用st表,直接莫队?????跑起来也不是特别慢... 这里用flag数组记录出现次数,set维护最小值,用的时候直接取头部. 代码也很短 #include<bits/stdc++.h> #define swap(a,b) {a^=b;b^=a;a^=b} #define rep(a,b,c) for(int a=b;a<=c;a++) #define per(i,n,a) for (int i=n;i>=a;i--) #de…
题面及大致思路:https://www.cnblogs.com/Yangrui-Blog/p/9623294.html, https://www.cnblogs.com/New-Godess/p/4567282.html 每个点维护2个矩阵,一共15个变量.矩阵a: [a(i - 1), a(i), a(i + 1); b(i - 1), b(i), b(i + 1)], 矩阵b就是a(i - 1), a(i), a(i + 1)与b(i - 1), b(i), b(i + 1)的两两乘积,矩阵…
题目大意:给你一个集合$n,m,x,S(S_i\in(0,m],m\leqslant 8000,m\in \rm{prime},n\leqslant10^9)$,求一个长度为$n$的序列$Q$,满足$Q_i\in S$,且$\prod\limits _{i=1}^nQ_i=x$,求序列的个数 题解:乘比较麻烦,可以把每个数求$\ln$,可以求出$m$的原根,求原根可以暴力$O(m^2)$求,然后每个数求$\ln$,求出生成函数$F(x)$,算出$F^n(x)$.发现$n$较大,多项式快速幂即可.…
传送门 公式太长了……我就直接抄一下这位大佬好了……实在懒得打了 首先据说$d(ij)$有个性质$$d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$ 我们所求的答案为$$ans=\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)$$ $$ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$ 考虑一下$gcd(x,y)=1$,我们可以考虑莫比乌斯函数的性质,那么即$\su…
题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数据的组数.接下来的T行,每行两个整数N.M. 输出格式 T行,每行一个整数,表示你所求的答案. 输入样例 2 7 4 5 6 输出样例 110 121 提示 1<=N, M<=50000 1<=T<=50000 题解 好神的题[是我太弱吧] 首先上来就伤结论.. 题目所求 \[ans…