ResNet网络结构】的更多相关文章

MSRA(微软亚洲研究院)何凯明团队的深度残差网络(Deep Residual Network)在2015年的ImageNet上取得冠军,该网络简称为ResNet(由算法Residual命名),层数达到了152层,top-5错误率降到了3.57,而2014年冠军GoogLeNet的错误率是6.7.(何凯明博士,2007年清华大学毕业之后开始在微软亚洲研究院(MSRA)实习,2011年香港中文大学博士毕业后正式加入MSRA,目前在Facebook AI Research (FAIR)实验室担任研究…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
0. 背景 众所周知,深度学习,要的就是深度,VGG主要的工作贡献就是基于小卷积核的基础上,去探寻网络深度对结果的影响.而何恺明大神等人发现,不是随着网络深度增加,效果就好的,他们发现了一个违背直觉的现象. 图0.1 不同层数的传统网络下的结果表现 最开始,我们认为随着深度的增加,网络效果不好,那是因为存在着梯度消失和梯度爆炸的原因.不过随着大家的努力,这些问题可以通过归一化初始化(即用特定的初始化算法)和归一化层(Batch Normailzation)来极大的缓解. 可是,我们仍然能够发现随…
0. 背景 何凯明大神等人在提出了ResNet网络结构之后,对其做了进一步的分析工作,详细的分析了ResNet 构建块能起作用的本质所在.并通过一系列的实验来验证恒等映射的重要性,并由此提出了新的构建块模型使得网络能够更容易训练和更好的泛化性能(比如不同于ResNet v1中对cifar-10的学习率的谨慎,这里更加放开了). 图0.1 v1中的残差构建块和v2中建议的残差构建块 如图0.1所示,在ResNet v1中,构建块是通过将之前层的\(x\)连接到后面跳过至少2层的输出,然后将和放入激…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
目录 Resnet要解决的是什么问题 Residual Block的设计 ResNet 网络结构 error surface对比 Residual Block的分析与改进 小结 参考 博客:博客园 | CSDN | blog Resnet要解决的是什么问题 ResNets要解决的是深度神经网络的"退化"问题. 什么是"退化"? 我们知道,对浅层网络逐渐叠加layers,模型在训练集和测试集上的性能会变好,因为模型复杂度更高了,表达能力更强了,可以对潜在的映射关系拟合…
基于上一篇resnet网络结构进行实战. 再来贴一下resnet的基本结构方便与代码进行对比 resnet的自定义类如下: import tensorflow as tf from tensorflow import keras class BasicBlock(keras.layers.Layer): # filter_num指定通道数,stride指定步长 def __init__(self,filter_num,stride=1): super(BasicBlock, self).__in…
ResNet可以说是我认真读过的第一篇paper,据师兄说读起来比较简单,没有复杂的数学公式,不过作为经典的网络结构还是有很多细节值得深究的.因为平时不太读英文文献,所以其实读的时候也有很多地方不是很懂,还是搜了很多博客,所以我准备结合paper将读到的内容做一下总结. 一.为什么要引入ResNet? 首先作者提出了一个问题:深度越深的网络是否能够学习得越好? 答案必然是否定的,由于更新参数需要计算梯度,而网络层次越深也意味着一旦有某个节点的梯度接近0或接近无穷,根据链式法则,多次梯度连乘后会变…
上一篇文章我们引出了GoogLeNet InceptionV1的网络结构,这篇文章中我们会详细讲到Inception V2/V3/V4的发展历程以及它们的网络结构和亮点. GoogLeNet Inception V2 GoogLeNet Inception V2在<Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift>出现,最大亮点是提出了Batch Normal…
Pytorch预训练模型以及修改 pytorch中自带几种常用的深度学习网络预训练模型,torchvision.models包中包含alexnet.densenet.inception.resnet.squeezenet.vgg等常用网络结构,并且提供了预训练模型,可通过调用来读取网络结构和预训练模型(模型参数).往往为了加快学习进度,训练的初期直接加载pretrain模型中预先训练好的参数.加载model如下所示: import torchvision.models as models 1.加…
0.背景 随着CNN变得越来越深,人们发现会有梯度消失的现象.这个问题主要是单路径的信息和梯度的传播,其中的激活函数都是非线性的,从而特别是乘法就可以使得随着层数越深,假设将传统的神经网络的每一层看成是自动机中的一个状态.那么对于整个神经网络来说,输入到输出就是一个输入态不断的转移到输出态的一个过程.假设其中每一层都是有个变率,即缩放因子.那么: 变率大于1,层数越多,越呈现倍数放大趋势,比如爆炸: 变率小于1,层数越多,越呈现倍数缩小趋势,比如消失: 而传统以往的卷积神经网络都是单路径的,即从…
首先放出大佬的项目地址:https://github.com/yangxue0827/R2CNN_FPN_Tensorflow 那么从输入的数据开始吧,输入的数据要求为tfrecord格式的数据集,好在大佬在项目里已经给出了相应的代码,不过需要的原始数据为VOC格式,这里,我在以前的笔记里保存了普通图片+txt格式的原始数据生成VOC格式的数据集的代码(http://www.cnblogs.com/fourmi/p/8947342.html).上述数据集生成后,就开始设置batch了,设置Bat…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
论文标题:Faster R-CNN: Down the rabbit hole of modern object detection 论文作者:Zhi Tian , Weilin Huang, Tong He , Pan He , and Yu Qiao 论文地址:https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/ 论文地址:Object detect…
原文地址:https://blog.csdn.net/u014380165/article/details/79119664 PyTorch框架中有一个非常重要且好用的包:torchvision,该包主要由3个子包组成,分别是:torchvision.datasets.torchvision.models.torchvision.transforms.这3个子包的具体介绍可以参考官网:http://pytorch.org/docs/master/torchvision/index.html.具体…
仅用作自己学习 这篇文章中我们会详细讲到Inception V2/V3/V4的发展历程以及它们的网络结构和亮点. GoogLeNet Inception V2        GoogLeNet Inception V2在<Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift>出现,最大亮点是提出了Batch Normalization方法,它起到以下作用:  使用…
转子http://blog.csdn.net/qianqing13579/article/details/71076261 前言 入职之后,逐渐转到深度学习方向.很早就打算写深度学习相关博客了,但是由于各种原因被搁置了. 这段时间刚好有空,就把以前的笔记整理总结了一下,温故而知新,以前有些不是特别清楚的概念,通过这次的复习豁然开朗了,也希望自己的分享能够帮助其他人更好地理解CNN. 目前的博客计划如下: LeNet论文翻译与解读 AlexNet论文翻译与解读 VGGNet,Inception,R…
https://zhuanlan.zhihu.com/p/28871960 深度学习模型中的卷积神经网络(Convolution Neural Network, CNN)近年来在图像领域取得了惊人的成绩,CNN直接利用图像像素信息作为输入,最大程度上保留了输入图像的所有信息,通过卷积操作进行特征的提取和高层抽象,模型输出直接是图像识别的结果.这种基于”输入-输出”直接端到端的学习方法取得了非常好的效果,得到了广泛的应用. 卷积层(convolution layer): 执行卷积操作提取底层到高层…
Collaborative Spatioitemporal Feature Learning for Video Action Recognition 摘要 时空特征提取在视频动作识别中是一个非常重要的部分.现有的神经网络模型要么是分别学习时间和空间特征(C2D),要么是不加控制地联合学习时间和空间特征(C3D). 作者提出了一个新颖的neural操作,它通过在可学习的参数上添加权重共享约束来将时空特征encode collaboratively. 特别地,作者沿着体积视频数据的三个正交视图进行…
在炼丹师的路上越走越远,开始入手pytorch框架的学习,越炼越熟吧... 1. 张量的创建和操作 创建为初始化矩阵,并初始化 a = torch.empty(, ) #创建一个5*3的未初始化矩阵 nn.init.zeros_(a) #初始化a为0 nn.init.constant_(a, ) # 初始化a为3 nn.init.uniform_(a) #初始化为uniform分布 随机数矩阵 torch.rand(, ) # * , [, )的随机数torch.rand_like(m) #创建…
迁移学习的两个主要场景 微调CNN:使用预训练的网络来初始化自己的网络,而不是随机初始化,然后训练即可 将CNN看成固定的特征提取器:固定前面的层,重写最后的全连接层,只有这个新的层会被训练 下面修改预训练好的resnet18网络在私人数据集上进行训练来分类蚂蚁和蜜蜂 数据集下载 这里使用的数据集包含ants和bees训练图片各约120张,验证图片各75张.由于数据样本非常少,如果从0初始化一个网络进行训练很难有令人满意的结果,这时候迁移学习就派上了用场.数据集下载地址,下载后解压到项目目录 导…
1. 模型下载 import re import os import glob import torch from torch.hub import download_url_to_file from torch.hub import urlparse import torchvision.models as models def download_model(url, dst_path): parts = urlparse(url) filename = os.path.basename(pa…
前言   在学计算机视觉的这段时间里整理了不少的笔记,想着就把这些笔记再重新整理出来,然后写成Blog和大家一起分享.目前的计划如下(以下网络全部使用Pytorch搭建): 专题一:计算机视觉基础 介绍CNN网络(计算机视觉的基础) 浅谈VGG网络,介绍ResNet网络(网络特点是越来越深) 介绍GoogLeNet网络(网络特点是越来越宽) 介绍DenseNet网络(一个看似十分NB但是却实际上用得不多的网络) 整理期间还会分享一些自己正在参加的比赛的Baseline 专题二:GAN网络 搭建普…
目录 0. 论文链接 1. 概述 2. 残差学习 3. Identity Mapping by shortcuts 4. Network Architectures 5. 训练细节 6. 实验 @ 0. 论文链接 ResNet 1. 概述   从AlexNet出现后,后面的模型包括VGG,GoogLe-Net等都是想办法让网络边更宽更深,因为大量的实验证明网络更深更宽它的性能会更好.比较容易想到的是一味的增加深度会使得梯度爆炸/消失,但这问题在很大程度上使用标准化初始赋值跟中间层(BN)解决.但…
from:https://blog.csdn.net/xjz18298268521/article/details/79079008 NASNet总结 论文:<Learning Transferable Architectures for Scalable Image Recognition> 注   先啥都不说,看看论文的实验结果,图1和图2是NASNet与其他主流的网络在ImageNet上测试的结果的对比,图3是NASNet迁移到目标检测任务上的检测结果,从这图瞬间感觉论文的厉害之处了,值…
如何评价Dual Path Networks(DPN)? 论文链接:https://arxiv.org/pdf/1707.01629v1.pdf在ImagNet-1k数据集上,浅DPN超过了最好的ResNeXt-101(64×4d),具有26%更小的模型尺寸,25%的计算成本和8%的更低的内存消耗 5 个回答 xiaozhi CV.ML.DL   1.针对视觉识别任务的“网络工程”一直是研究的重点,其重在设计更为高效的网络拓扑结构,一方面考虑更好的特征表示学习,另一方面尽可能减少计算复杂度和内存…
AlexNet-> vgg vgg 采用更小的卷积核,加深网络深度,但两者的共同点都是卷积层+pooling层最后接上fc 层的结构 Network in network ->googleNet NIN 中采用global average pooling ,而不是使用 fc 层,减少了网络参数,googlenet是在网络中加入inception 的结构,让网络更宽. resnet 为了让网络更深,加入indentity 结构.     目标检测   rcnn 传统object proposal…
声明:Caffe 系列文章是我们实验室 黄佳斌 大神所写的内部学习文档,已经获得他的授权允许. 本参考资料是在 Ubuntu14.04 版本下进行,并且默认 Caffe 所需的环境已经配置好,下面教大家如何搭建 KaiMing He 的 Residual Network(残差网络). Cite: He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE…
1. LeNet 2. AlexNet 3. 参考文献: 1.  经典卷积神经网络结构——LeNet-5.AlexNet.VGG-16 2. 初探Alexnet网络结构 3.…
Deep Residual Learning for Image Recognition 微软亚洲研究院的何凯明等人 论文地址 https://arxiv.org/pdf/1512.03385v1.pdf Abstract 更深层次的神经网络训练更加困难.我们提出一个 Residual的学习框架来缓解训练的网比之前所使用的网络深得多.我们提供全面的经验证据显示这些残余网络更容易优化,并可以从显着增加的深度获得准确性.在ImageNet数据集上我们评估深度达152层残留网比VGG网[41]更深,但…