Iris数据集实战】的更多相关文章

本次主要围绕Iris数据集进行一个简单的数据分析, 另外在数据的可视化部分进行了重点介绍. 环境 win8, python3.7, jupyter notebook 目录 1. 项目背景 2. 数据概览 3. 特征工程 4. 构建模型 正文 1. 项目背景 鸢尾属(拉丁学名:Iris L.), 单子叶植物纲, 鸢尾科多年生草本植物, 开的花大而美丽, 观赏价值很高. 鸢尾属约300种, Iris数据集中包含了其中的三种: 山鸢尾(Setosa),  杂色鸢尾(Versicolour), 维吉尼亚…
前言 本篇我会使用scikit-learn这个开源机器学习库来对iris数据集进行分类练习. 我将分别使用两种不同的scikit-learn内置算法--Decision Tree(决策树)和kNN(邻近算法),随后我也会尝试自己实现kNN算法.目前为止,我还是在机器学习的入门阶段,文章中暂不详细解释算法原理,如果想了解细节信息可自行搜索. 代码分解 读取数据集 scikit-learn中预制了很多经典数据集,非常方便我们自己练习用.使用方式也很容易: # 引入datasets from skle…
SVM全称是Support Vector Machine,即支持向量机,是一种监督式学习算法.它主要应用于分类问题,通过改进代码也可以用作回归.所谓支持向量就是距离分隔面最近的向量.支持向量机就是要确保这些支持向量距离超平面尽可能的远以保证模型具有相当的泛化能力. 当训练数据线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机:当训练数据近似线性可分时,通过软间隔最大化,也学习一个线性分类器,即线性支持向量机:当训练数据线性不可分时,通过使用核技巧,将低维度的非线性问题转化为高…
我看CSDN下载的iris数据集都需要币,我愿意免费共享,希望下载后的朋友们给我留个言 分享iris数据集(供学习使用): 链接: https://pan.baidu.com/s/1Knsp7zn-CGkPs8k-akpiww 密码: ejnw ( 1.有header:2.有.csv和.txt两种格式)…
代码多来自<Introduction to Machine Learning with Python>. 该文集主要是自己的一个阅读笔记以及一些小思考,小总结. 前言 在开始进行模型训练之前,非常有必要了解准备的数据:数据的特征,数据和目标结果之间的关系是什么?而且这可能是机器学习过程中最重要的部分. 在开始使用机器学习实际应用时,有必要先回答下面几个问题: 解决的问题是什么?现在收集的数据能够解决目前的问题吗? 该问题可以转换成机器学习问题吗?如果可以,具体属于哪一类?监督 or 非监督 从…
''' Created on 2017年5月21日 @author: weizhen ''' #Tensorflow的另外一个高层封装TFLearn(集成在tf.contrib.learn里)对训练Tensorflow模型进行了一些封装 #使其更便于使用. #使用TFLearn实现分类问题 #为了方便数据处理,本程序使用了sklearn工具包, #更多信息可以参考http://scikit-learn.org from sklearn import model_selection from sk…
R语言实现分层抽样(Stratified Sampling)以iris数据集为例 1.观察数据集 head(iris) Sampling)以iris数据集为例">  选取数据集中前6个数据,我们可以看出iris数据集一共有5个字段. dim(iris) Sampling)以iris数据集为例">  iris数据集一共有150条数据,5个字段 summary(iris) Sampling)以iris数据集为例">  观察各个变量的内容,可以看出前四个变量(Se…
iris数据集预测(对比随机森林和逻辑回归算法) 随机森林 library(randomForest) #挑选响应变量 index <- subset(iris,Species != "setosa")ir <- droplevels(index) set.seed(1) ind<-sample(2,nrow(ir),replace=TRUE,prob=c(0.7,0.3)) train<-ir[ind==1,] test<-ir[ind==2,] rf&…
书接上回,我们已经安装好Iris框架,并且构建好了Iris项目,同时配置了fresh自动监控项目的实时编译,万事俱备,只欠东风,彩虹女神蓄势待发.现在我们来看看Iris的基础功能,如何编写项目入口文件以及配置路由系统. 项目入口 事实上,Iris遵循的是单一入口模式,说白了就是单一入口文件main.go处理项目所有的来源请求,如此,项目就避免了因为多个文件处理不同的请求而增加的安全性风险,同时也更便于项目的统筹管理.在上一篇文章:急如闪电快如风,彩虹女神跃长空,Go语言进阶之Go语言高性能Web…
所有内容都在python源码和注释里,可运行! ########################### #说明: # 撰写本文的原因是,笔者在研究博文“http://python.jobbole.com/83563/”中发现 # 原内容有少量笔误,并且对入门学友缺少一些信息.于是笔者做了增补,主要有: # 1.查询并简述了涉及的大部分算法: # 2.添加了连接或资源供进一步查询: # 3.增加了一些lib库的基本操作及说明: # 4.增加了必须必要的python的部分语法说明: # 5.增加了对…