[POI 2009]Lyz】的更多相关文章

Description 题库链接 初始时滑冰俱乐部有 \(1\) 到 \(n\) 号的溜冰鞋各 \(k\) 双.已知 \(x\) 号脚的人可以穿 \(x\) 到 \(x+d\) 的溜冰鞋.有 \(m\) 次操作,每次包含两个数 \(r_i\) , \(x_i\) 代表来了 \(x_i\) 个 \(r_i\) 号脚的人. \(x_i\) 为负,则代表走了这么多人. 对于每次操作,输出溜冰鞋是否足够. \(1\leq n\leq 200,000,1\leq m\leq 500,000\) Solut…
题面 板板讲的霍尔定理 霍尔定理:一张二分图有完全匹配的充要条件是对于任$i$个左部点都有至少$i$个右部点与它们相邻.放在这个题里就是说显然最容易使得鞋不够的情况是一段连续的人,那就维护一下最大子段和就好了=.= #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; *N],rr[*N],len[*N],val[*N]; long long n,m,k,d,t1,t2…
题面 洛谷数据非常水,建议去bzoj 我第一眼一看这不是那个POI2011的升级版吗(明明这个是2009年的,应该说那个是这个的弱化版,果然思想差不多. 因为$k$很小,可以考虑每个间隔距离来转移.我们按照传统(雾,其实这里的的名字已经不是很符合定义了,设$cov[i][j]$表示以$i$为根的子树里剩余控制距离为$j$的点还能控制几个点,$unc[i][j]$表示以$i$为根的子树里还没被覆盖的距离等于$j$的点有几个.每次从儿子获取信息后先更新$cov[x][k]$,然后就是这“类”题的关键…
题面 看起来很水,然而不会DP的蒟蒻并不会做,PoPoqqq orz 设$f[i][j]$表示当前在第$i$个点和第$i+1$个点之间查票,已经查了$j$次的最大收益.然后就是那种很常见的枚举前一个结尾的转移,主要是贡献的求法,从$x$到$y$的贡献是$val[(x+1,y+1)][(y,n)]$(二维前缀和一下).对于方案就在更新时记录上一个结尾即可 #include<cstdio> #include<cstring> #include<algorithm> usin…
题面 这也算是个套路题(算吗)?发现换来换去每行每列数的组成是不变的,那么就把每行每列拎出来哈希一下,复杂度$O(Tn^2log$ $n)$有点卡时=.=. 然而正解似乎不需要哈希,就像这样↓ ;i<=n;i++) ;j<=m;j++){ int xxx=read(); x[xxx+A]=i; y[xxx+A]=j; } bool b=true; ;i<=n;i++){ ;j<=m;j++){ a[i][j]=read(); ]+A]||x[a[i][j]+A]==)b=false…
http://www.lydsy.com/JudgeOnline/problem.php?id=1115 差分后变成阶梯博弈. #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int N = 1003; int a[N], n, s; int main() { int T; scanf("%d", &T); while (T--…
前言 没脑子选手随便一道博弈论都不会 -- 正文 Nim 游戏引入 这里给出最简单的 \(Nim\) 游戏的题目描述: \(Nim\) 游戏 有两个顶尖聪明的人在玩游戏,游戏规则是这样的: 有\(n\)堆石子,两个人可以从任意一堆石子中拿任意多个石子(不能不拿),没法拿的人失败. 问最后谁会胜利. 结果是:当 \(n\) 堆石子的数量异或和等于 \(0\) 时,先手必胜,否则先手必败. 来考虑口胡一个证明: 考虑异或和是 \(0\) 的意义. 异或和是 \(0\) 代表着对于所有石头数的每一位二…
1.使用poi生成文件 package com.mi.entity; import java.util.Date; public class Student { private int id; private String name; private int age; private Date birth; public Student(int id, String name, int age, Date birth) { super(); this.id = id; this.name = n…
这里面包含了模板导出方法和自定义模板进行导出 package jp.co.syspro.poo.action.hibikoyou; import java.io.ByteArrayOutputStream; import java.io.DataOutput; import java.io.DataOutputStream; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.IOExce…