『TensorFlow』网络操作API_上】的更多相关文章

简书翻译原文 卷积层 卷积操作是使用一个二维的卷积核在一个批处理的图片上进行不断扫描.具体操作是将一个卷积核在每张图片上按照一个合适的尺寸在每个通道上面进行扫描.为了达到好的卷积效率,需要在不同的通道和不同的卷积核之间进行权衡. 三个卷积函数: conv2d: 任意的卷积核,能同时在不同的通道上面进行卷积操作. depthwise_conv2d: 卷积核能相互独立的在自己的通道上面进行卷积操作. separable_conv2d: 在纵深卷积 depthwise filter 之后进行逐点卷积…
一.优化器基类介绍 标注一点,优化器中的学习率可以是tensor,这意味着它可以feed, learning_rate: A Tensor or a floating point value. 正常使用流程: 创建优化器对象 -> 指定最小化loss & 可优化参数 -> runminimize实际包含两个操作:首先计算梯度,然后更新可训练参数. 非标准化操作: 希望计算出梯度之后 - > 人工处理梯度 -> 优化参数, 使用两个新的函数取代minimize: # 创建一个…
一.误差值 度量两个张量或者一个张量和零之间的损失误差,这个可用于在一个回归任务或者用于正则的目的(权重衰减). l2_loss tf.nn.l2_loss(t, name=None) 解释:这个函数的作用是利用 L2 范数来计算张量的误差值,但是没有开方并且只取 L2 范数的值的一半,具体如下: output = sum(t ** 2) / 2 输入参数: t: 一个Tensor.数据类型必须是一下之一:float32,float64,int64,int32,uint8,int16,int8,…
1.网络背景 自2012年Alexnet提出以来,图像分类.目标检测等一系列领域都被卷积神经网络CNN统治着.接下来的时间里,人们不断设计新的深度学习网络模型来获得更好的训练效果.一般而言,许多网络结构的改进(例如从VGG到RESNET可以给很多不同的计算机视觉领域带来进一步性能的提高. 这些CNN模型都有一个通病:计算量大.最早的AlexNet含有60M个参数,之后的VGGNet参数大致是AlexNet的3倍之多,而14年GoogLe提出的GoogleNet仅有5M个参数,效果和AlexNet…
TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训练方法教程 一.API介绍 基础操作列表 『TensorFlow』0.x_&_1.x版本框架改动汇总 『TensorFlow』函数查询列表_数值计算 『TensorFlow』函数查询列表_张量属性调整 『TensorFlow』简单的数学计算 『TensorFlow』变量初始化 常用基础操作 『Ten…
tf.trainable_variables可以得到整个模型中所有trainable=True的Variable,也是自由处理梯度的基础 基础梯度操作方法: tf.gradients 用来计算导数.该函数的定义如下所示 def gradients(ys, xs, grad_ys=None, name="gradients", colocate_gradients_with_ops=False, gate_gradients=False, aggregation_method=None)…
『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 参数名称 功能说明 默认值 var_list Saver中存储变量集合 全局变量集合 reshape 加载时是否恢复变量形状 True sharded 是否将变量轮循放在所有设备上 True max_to_keep 保留最近检查点个数 5 restore_sequentially 是否按顺序恢复变量,模型…
本节中的代码大量使用『TensorFlow』分布式训练_其一_逻辑梳理中介绍的概念,是成熟的多机分布式训练样例 一.基本概念 Cluster.Job.task概念:三者可以简单的看成是层次关系,task可以看成每台机器上的一个进程,多个task组成job:job又有:ps.worker两种,分别用于参数服务.计算服务,组成cluster. 同步更新 各个用于并行计算的电脑,计算完各自的batch 后,求取梯度值,把梯度值统一送到ps服务机器中,由ps服务机器求取梯度平均值,更新ps服务器上的参数…
滑动平均会为目标变量维护一个影子变量,影子变量不影响原变量的更新维护,但是在测试或者实际预测过程中(非训练时),使用影子变量代替原变量. 1.滑动平均求解对象初始化 ema = tf.train.ExponentialMovingAverage(decay,num_updates) 参数decay `shadow_variable = decay * shadow_variable + (1 - decay) * variable` 参数num_updates `min(decay, (1 +…
『TensorFlow』降噪自编码器设计  之前学习过的代码,又敲了一遍,新的收获也还是有的,因为这次注释写的比较详尽,所以再次记录一下,具体的相关知识查阅之前写的文章即可(见上面链接). # Author : Hellcat # Time : 2017/12/6 import numpy as np import sklearn.preprocessing as prep import tensorflow as tf from tensorflow.examples.tutorials.mn…