平面最近点对,即平面中距离最近的两点 分治算法: int SOLVE(int left,int right)//求解点集中区间[left,right]中的最近点对 { double ans; //answer 0)    调用前的预处理:对所有点排序,以x为第一关键词y为第二关键字 , 从小到大; 1)    将所有点按x坐标分成左右两部分; /*      分析当前集合[left,right]中的最近点对,有两种可能: 1. 当前集合中的最近点对,点对的两点同属于集合[left,mid]或同属…
背景 雍正帝胤祯,生于康熙十七年(1678)是康熙的第四子.康熙61年,45岁的胤祯继承帝位,在位13年,死于圆明园.庙号世宗. 胤祯是在康乾盛世前期--康熙末年社会出现停滞的形式下登上历史舞台的.复杂的社会矛盾,为胤祯提供了施展抱负和才干的机会.他有步骤地进行了多项重大改革,高瞻远瞩,又惟日孜孜,励精图治,十三年中取得了卓有成效的业绩,为后代的乾隆打下了扎实雄厚的基础,使"康乾盛世"在乾隆时期达到了顶峰.他的历史地位,同乃父康熙和乃子乾隆相比,毫不逊色.尽管他猜忌多疑,刻薄寡恩,统治…
题目传送门 题目大意:给定平面上n个点,找出其中的一对点的距离,使得在这n个点的所有点对中,该距离为所有点对中最小的.$n$<=100000. $Algorithm$ 最朴素的$n^2$枚举肯定是不行了,我们在这个数量级只能考虑$nlogn$做法.那么与这个数量级比较相关的也就是分治了. 把整个平面分为两个部分,分别求出两个部分点对间最小的距离,之后再处理跨区域的情况. • 分治法求解步骤: O(NlogN)  by hzwer1 将点集 S 分为两个⼦集 SL 和 SR 分别求解2 记 δ 为…
传统的计算方法为循环n个a相乘.时间复杂度为O(n). 如用分治算法,效率可提升至O(lgn). 结合recursive有 double pow(int a, int n){ ) ; ) return a; ); ); } 也可用循环的方法 double pow(int a, int n){ ; while(n){ ==) res =res * a; a = a* a; n/=; } }…
传送门 题意:给出$N$个点,求其中周长最小的三角形(共线的也计算在内).$N \leq 2 \times 10^5$ 这道题唤起了我对平面最近点对的依稀记忆 考虑平面最近点对的分治,将分界线两边的求解改为求三角形的最小边长即可. 小心坐标乘积爆int 不难但就是想不出 //This code is written by Itst #include<bits/stdc++.h> #define int long long #define ld long double #define eps (…
题目链接 Description Farmer John's cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists of the same input…
平面最近点对,是指给出平面上的n个点,寻找点对间的最小距离 首先可以对按照x为第一关键字排序,然后每次按照x进行分治,左边求出一个最短距离d1,右边也求出一个最短距离d2,那么取d=min(d1, d2) 然后只需考虑横跨左右两侧的点,不妨枚举左侧的点pi 那么很显然的是如果pi距离中间的点超过了d,便可以直接舍去,只需考虑距离中间点小于d的点 这样一来就可以对每个pi画一个边长为2d的正方形,易证,矩形内最多存在8个点. 那么关键问题就是要快速找这8个点 朴素做法是对分治后的点进行快排,这样复…
Luogu 1429 平面最近点对 题目描述 给定平面上n个点,找出其中的一对点的距离,使得在这n个点的所有点对中,该距离为所有点对中最小的 输入输出格式 输入格式: 第一行:n:2≤n≤200000 接下来n行:每行两个实数:x y,表示一个点的行坐标和列坐标,中间用一个空格隔开. 输出格式: 仅一行,一个实数,表示最短距离,精确到小数点后面4位. 这是一道平面上的分治. 这是一个平面,我们把它分成两半,使x坐标位于最中间的两个点分到左右两侧: 对于同在左侧或同在右侧的点对,我们可以递归处理:…
P1429 平面最近点对(加强版) 题意 题目描述 给定平面上\(n\)个点,找出其中的一对点的距离,使得在这\(n\)个点的所有点对中,该距离为所有点对中最小的. 输入输出格式 输入格式: 第一行:\(n\):\(2\leq n\leq 200000\) 接下来\(n\)行:每行两个实数:\(x\ y\),表示一个点的行坐标和列坐标,中间用一个空格隔开. 输出格式: 仅一行,一个实数,表示最短距离,精确到小数点后面\(4\)位. 输入输出样例 输入样例#1: 3 1 1 1 2 2 2 输出样…
P1429 平面最近点对(加强版) 主要思路: 分治,将点按横坐标为第1关键字升序排列,纵坐标为第2关键字升序排列,进入左半边和右半边进行分治. 设d为左右半边的最小点对值.然后以mid这个点为中心,扩展宽为2d,长为2d的正方形.除了这个正方形外的点都不可能使答案更小.而且这个正方形里至多8个点(可以证明至多6个,我不会.but,知道至多8个就够了,这样已经保证了复杂度.)一句话证明:如果多余8个点,那么必有2个点的最小距离比d小.这8个点内暴力枚举就好了. #include<bits/std…