【CS231N】2、多类SVM】的更多相关文章

CS231n Convolutional Neural Networks for Visual Recognition -- optimization 1. 多类 SVM 的损失函数(Multiclass SVM loss) 在给出类别预测前的输出结果是实数值, 也即根据 score function 得到的 score(s=f(xi,W)), Li=∑j≠yimax(0,sj−syi+Δ),Δ=1(一般情况下) yi 表示真实的类别,syi 在真实类别上的得分: sj,j≠yi 在其他非真实类…
一.疑问 1. assignments1 linear_svm.py文件的函数 svm_loss_naive中,使用循环的方式实现梯度计算 linear_svm.py文件的函数 svm_loss_vectorized中,梯度的向量化实现 SVM的损失函数在某个数据点上的计算: 对函数进行微分,比如对进行微分得到: 在代码实现的时候,只需要计算没有满足边界值的分类的数量(因此对损失函数产生了贡献),然后乘以就是梯度了.注意,这个梯度只是对应正确分类的W的行向量的梯度,那些行的梯度是: 二.知识点…
cs231n:线性svm与softmax 参数信息: 权重 W:(D,C) 训练集 X:(N,D),标签 y:(N,1) 偏置量bias b:(C,1) N:训练样本数:  D:样本Xi 的特征维度,Xi = [ Xi1,Xi2,...,XiD]: C:类别数量 正则化系数 λ :控制正则化的强度 delta / Δ : 间隔 linear svm: 对训练样本(Xi,yi),其对应每个类别的得分为: score = W*Xi+ b 是长度为C的矢量,以s表示 score, s = [s1, s…
CS231n之线性分类器 斯坦福CS231n项目实战(二):线性支持向量机SVM CS231n 2016 通关 第三章-SVM与Softmax cs231n:assignment1——Q3: Implement a Softmax classifier cs231n线性分类器作业:(Assignment 1 ): 二 训练一个SVM: steps: 完成一个完全向量化的SVM损失函数 完成一个用解析法向量化求解梯度的函数 再用数值法计算梯度,验证解析法求得结果 使用验证集调优学习率与正则化强度…
作业内容,完成作业便可熟悉如下内容: cell 1  设置绘图默认参数 # Run some setup code for this notebook. import random import numpy as np from cs231n.data_utils import load_CIFAR10 import matplotlib.pyplot as plt # This is a bit of magic to make matplotlib figures appear inline…
可以参考:cs231n assignment1 SVM 完整代码 231n作业   多类 SVM 的损失函数及其梯度计算(最好)https://blog.csdn.net/NODIECANFLY/article/details/82927119  (也不错) 作业部分: 完成结构化SVM的损失梯度的理论计算 完成梯度计算的循环形式的代码 svm_loss_naive 完成向量化梯度计算的代码 svm_loss_vectorized 完成随机梯度下降法的代码,在linear_classifier.…
回顾上一节中,介绍了图像分类任务中的两个要点: 假设函数.该函数将原始图像像素映射为分类评分值. 损失函数.该函数根据分类评分和训练集图像数据实际分类的一致性,衡量某个具体参数集的质量好坏. 现在介绍第三个要点,也是最后一个关键部分:最优化Optimization.最优化是寻找能使得损失函数值最小化的参数 W 的过程,一旦理解了这三个部分是如何相互运作的,我们将会回到第一个要点,然后将其拓展为一个远比线性函数复杂的函数:首先是神经网络,然后是卷积神经网络.而损失函数和最优化过程这两个部分将会保持…
Liner classifier 线性分类器用作图像分类主要有两部分组成:一个是假设函数, 它是原始图像数据到类别的映射.另一个是损失函数,该方法可转化为一个最优化问题,在最优化过程中,将通过更新假设函数的参数值来最小化损失函数值. 从图像到标签分值的参数化映射:该方法的第一部分就是定义一个评分函数,这个函数将图像的像素值映射为各个分类类别的得分,得分高低代表图像属于该类别的可能性高低.下面会利用一个具体例子来展示该方法.现在假设有一个包含很多图像的训练集 $x_i \in \mathbb{R}…
CS231n简介 CS231n的全称是CS231n: Convolutional Neural Networks for Visual Recognition,即面向视觉识别的卷积神经网络.该课程是斯坦福大学计算机视觉实验室推出的课程.需要注意的是,目前大家说CS231n,大都指的是2016年冬季学期(一月到三月)的最新版本. 课程描述:请允许我们引用课程主页上的官方描述如下. 计算机视觉在社会中已经逐渐普及,并广泛运用于搜索检索.图像理解.手机应用.地图导航.医疗制药.无人机和无人驾驶汽车等领…
译者注:本文智能单元首发,译自斯坦福CS231n课程笔记Optimization Note,课程教师Andrej Karpathy授权翻译.本篇教程由杜客翻译完成,堃堃和李艺颖进行校对修改.译文含公式和代码,建议PC端阅读. 原文如下 内容列表: 简介 损失函数可视化 最优化 策略#1:随机搜索 策略#2:随机局部搜索 策略#3:跟随梯度 译者注:上篇截止处 梯度计算 使用有限差值进行数值计算 微分计算梯度 梯度下降 小结 简介 在上一节中,我们介绍了图像分类任务中的两个关键部分: 基于参数的评…