OpenCV学习(19) 细化算法(7)】的更多相关文章

最后再来看一种通过形态学腐蚀和开操作得到骨架的方法.http://felix.abecassis.me/2011/09/opencv-morphological-skeleton/ 代码非常简单: void gThin::cvmorphThin(cv::Mat& src, cv::Mat& dst)     {     if(src.type()!=CV_8UC1)         {         printf("只能处理二值或灰度图像\n");         r…
本章我们学习Rosenfeld细化算法,参考资料:http://yunpan.cn/QGRjHbkLBzCrn 在开始学习算法之前,我们先看下连通分量,以及4连通性,8连通性的概念: http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/connectivity.html 假设我们有二值图,背景像素值为0,前景像素值为1. 我们使…
本章我们在学习一下基于索引表的细化算法. 假设要处理的图像为二值图,前景值为1,背景值为0. 索引表细化算法使用下面的8邻域表示法: 一个像素的8邻域,我们可以用8位二进制表示,比如下面的8邻域,表示为00111000=0x38=56 我们可以枚举出各种情况下,当前像素能否删除的表,该表大小为256.它的索引即为8邻域表示的值,表中存的值为0或1,0表示当前像素不能删除,1表示可以删除.deletemark[256] 比如下图第一个表示,索引值为0,它表示孤立点,不能删除,所以deletemar…
      本章我们学习一下Hilditch算法的基本原理,从网上找资料的时候,竟然发现两个有很大差别的算法描述,而且都叫Hilditch算法.不知道那一个才是正宗的,两个算法实现的效果接近,第一种算法更好一些. 第一种算法描述参考paper和代码: Linear Skeletons from Square Cupboards Speedup Method for Real-Time Thinning Algorithm http://cis.k.hosei.ac.jp/~wakahara/Hi…
本章我们看下Pavlidis细化算法,参考资料http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/theo.html Computer VisiAlgorithms in Image Algebra,second edition 该算法最初是做前景轮廓跟踪的. 假设使用下面的8邻域,且前景像素值为1,背景像素值为0. 下面是该算…
      前面一篇教程中,我们实现了Zhang的快速并行细化算法,从算法原理上,我们可以知道,算法是基于像素8邻域的形状来决定是否删除当前像素.还有很多与此算法相似的细化算法,只是判断的条件不一样.在综述文章, Thinning Methodologies-A Comprehensive Survey中描述了各种细化算法的实现原理,有兴趣可以阅读一下.       下面看看图像细化的定义以及细化算法的分类: 图像细化(Image Thinning),一般指二值图像的骨架化(Image Skel…
程序编码参考经典的细化或者骨架算法文章: T. Y. Zhang and C. Y. Suen, "A fast parallel algorithm for thinning digital patterns," Comm. ACM, vol. 27, no. 3, pp. 236-239, 1984. 它的原理也很简单:       我们对一副二值图像进行骨架提取,就是删除不需要的轮廓点,只保留其骨架点.假设一个像素点,我们定义该点为p1,则它的八邻域点p2->p9位置如下图…
要达到的效果就是将线条尽量细化成单像素,按照论文上的Hilditch算法试了一下,发现效果不好,于是自己尝试着写了一下细化的算法,基本原理就是从上下左右四个方向向内收缩. 1.先是根据图片中的原则确定了以下16种情况 2.调试过后发现,迭代次数多了之后,原来连接着的线条会断开,分析原因如下图 3.修改了一下判断条件 4.调试过后发现还是会出现断的地方,再次分析原因如下图 5.又加了判断条件,如下图 最终实现的效果如下   对比图 对规则曲线的效果比较好 但是圆的效果不太好,有待改进 附上代码,测…
本教程我学习一下opencv中分水岭算法的具体实现方式. 原始图像和Mark图像,它们的大小都是32*32,分水岭算法的结果是得到两个连通域的轮廓图. 原始图像:(原始图像必须是3通道图像) Mark图像: 结果图像:       初始的mark图像数据如下,黄色的部分为我们的第一个mark区域,值为255,第二个区域为褐红色的区域,值为128,第三个绿色的区域,值为64.   opencv分水岭算法描述如下: 初始化mark矩阵,生成最初的注水区域. 1.设置mark图像的边框值为-1 2.…
grab cut算法是graph cut算法的改进.在理解grab cut算之前,应该学习一下graph cut算法的概念及实现方式. 我搜集了一些graph cut资料:http://yunpan.cn/QGDVdBXwkXutH      grab cut算法详细描述见资料中的pdf文件:"GrabCut" - Interactive Foreground Extraction using Iterated Graph Cuts      grab cut算法是一种基于图论的图像分…
    现在我们看看OpenCV中如何使用分水岭算法.     首先我们打开一副图像:    // 打开另一幅图像   cv::Mat    image= cv::imread("../tower.jpg");     if (!image.data)         {         cout<<"不能打开图像!"<<endl;         return 0;         }      接下来,我们要创建mark图像.mark图像…
        分水岭算法主要用于图像分段,通常是把一副彩色图像灰度化,然后再求梯度图,最后在梯度图的基础上进行分水岭算法,求得分段图像的边缘线.         下面左边的灰度图,可以描述为右边的地形图,地形的高度是由灰度图的灰度值决定,灰度为0对应地形图的地面,灰度值最大的像素对应地形图的最高点. 我们可以自己编程实现灰度图的地形图显示,工程FirstOpenCV6就实现了简单的这个功能,比如上边的灰度图,显示为: 对灰度图的地形学解释,我们我们考虑三类点: 1. 局部最小值点,该点对应一个…
http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 2013-03-23 17:44 16963人阅读 评论(28) 收藏 举报  分类: 机器视觉(34)  版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   KAZE系列笔记: OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 OpenCV学习笔记…
http://www.cnblogs.com/mikewolf2002/p/3330390.html OpenCV学习(20) grabcut分割算法 在OpenCV中,实现了grabcut分割算法,该算法可以方便的分割出前景图像,操作简单,而且分割的效果很好.算法的原理参见papaer:“GrabCut” — Interactive Foreground Extraction using Iterated Graph Cuts 比如下面的一副图,我们只要选定一个四边形框,把框中的图像作为gra…
1 使用普通摄像头进行深度估计 1.1 深度估计原理 这里会用到几何学中的极几何(Epipolar Geometry),它属于立体视觉(stereo vision)几何学,立体视觉是计算机视觉的一个分支,它从同一物体的两张不同图像提取三维信息. 极几何的工作原理: 它跟踪从摄像头到图像上每个物体的虚线,然后再第二张图像做同样的操作,并根据同一物体对应的线的交叉来计算距离. 在使用 OpenCV 如何使用极几何来计算所谓的视差图,它是如图像中检测到不同深度的基本表示,这样就能够提取出一张图片的前景…
凸形状内部的任意两点的连线都应该在形状里面. 1 道格拉斯-普克算法 Douglas-Peucker algorithm 这个算法在其他文章中讲述的非常详细,此处就详细撰述. 下图是引用维基百科的.ε称之为阈值 shreshold 图一 静态图如下: 具体详细的可以参考如下两篇文章. 相关文章如下: 道格拉斯-普克 抽稀算法 附javascript实现,该文章只看他的文字讲解就好,他的代码不是通过python实现的. 道格拉斯-普克算法(Douglas–Peucker algorithm),该文…
细化算法它的原理也很简单: 我们对一副二值图像进行骨架提取,就是删除不需要的轮廓点,只保留其骨架点.假设一个像素点,我们定义该点为p1,则它的八邻域点p2->p9位置如下图所示,该算法考虑p1点邻域的实际情况,以便决定是否删除p1点.假设我们处理的为二值图像,背景为黑色,值为0,要细化的前景物体像素值为1. 算法的描述如下: 首先复制源图像到目地图像,然后建立一个临时图像,接着执行下面操作: 1. 把目地图像复制给临时图像,对临时图像进行一次扫描,对于不为0的点,如果满足以下四个条件,则在目地图…
原文作者:aircraft 原文地址:https://www.cnblogs.com/DOMLX/p/8672489.html 文中的一些图片以及思想很多都是参考https://www.cnblogs.com/My-code-z/p/5712524.html 大佬的思想 以及自己做一些个人理解的补充 若想下载指静脉识别入门代码:https://github.com/lmskyle/process 细化算法原理理解起来并不难,借助矩阵九宫格来实现.将九宫格定义并且编号成如下格式. 在讲解之前有必要…
在上篇博客特征点检测学习_1(sift算法) 中简单介绍了经典的sift算法,sift算法比较稳定,检测到的特征点也比较多,其最大的确定是计算复杂度较高.后面有不少学者对其进行了改进,其中比较出名的就是本文要介绍的surf算法,surf的中文意思为快速鲁棒特征.本文不是专门介绍surf所有理论(最好的理论是作者的论文)的,只是对surf算法进行了下整理,方便以后查阅. 网上有些文章对surf做了介绍,比如: http://wuzizhang.blog.163.com/blog/static/78…
二值图像的细化算法也有很多种,比较有名的比如Hilditch细化.Rosenfeld细化.基于索引表的细化.还有Opencv自带的THINNING_ZHANGSUEN.THINNING_GUOHALL喜欢等等.这些都属于迭代的细化方式,当然还有一种是基于二值图像距离变换的细化方法,二值想比较,我个人认为是基于迭代的效果稳定.可靠,但是速度较慢,且速度和图片的内容有关,基于距离变换的版本,优点是速度稳定,但是效果差强人意.本文这里还是选择基于迭代的方式予以实现. 相关的参考文章有:http://c…
opencv学习笔记(三)基本数据类型 类:DataType 将C++数据类型转换为对应的opencv数据类型 OpenCV原始数据类型的特征模版.OpenCV的原始数据类型包括unsigned char.bool.signed char.unsigned short.signed short.int.float.double以及由这些基础类型组成的元组,这些元组中的所有值都属于相同的类型.这个原始数据类型列表中的所有类型都可以使用一个标示符进行表示CV_<bit-depth>{U|S|F}C…
      首页 视界智尚 算法技术 每日技术 来打我呀 注册     OpenCV学习笔记大集锦 整理了我所了解的有关OpenCV的学习笔记.原理分析.使用例程等相关的博文.排序不分先后,随机整理的.如果有好的资源,也欢迎介绍和分享. 1:OpenCV学习笔记 作者:CSDN数量:55篇博文网址:http://blog.csdn.net/column/details/opencv-manual.html 2:部分OpenCV的函数解读和原理解读 作者:梦想腾飞数量:20篇博文网址:http:/…
[原文:http://blog.csdn.net/qianchenglenger/article/details/19332011] 在我们进行图像处理的时候,有可能需要对图像进行细化,提取出图像的骨架信息,进行更加有效的分析.      图像细化(Image Thinning),一般指二值图像的骨架化(Image Skeletonization) 的一种操作运算.      所谓的细化就是经过一层层的剥离,从原来的图中去掉一些点,但仍要保持原来的形状,直到得到图像的骨架.骨架,可以理解为图象的…
OpenCV 学习笔记(模板匹配) 模板匹配是在一幅图像中寻找一个特定目标的方法之一.这种方法的原理非常简单,遍历图像中的每一个可能的位置,比较各处与模板是否"相似",当相似度足够高时,就认为找到了我们的目标. 在 OpenCV 中,提供了相应的函数完成这个操作. matchTemplate 函数:在模板和输入图像之间寻找匹配,获得匹配结果图像 minMaxLoc 函数:在给定的矩阵中寻找最大和最小值,并给出它们的位置 在具体介绍这两个函数之前呢,我们还要介绍一个概念,就是如何来评价两…
笔者在学习数据结构与算法时,尝试着将排序算法以动画的形式呈现出来更加方便理解记忆,本文配合Demo 在Object-C中学习数据结构与算法之排序算法阅读更佳. 目录 选择排序 冒泡排序 插入排序 快速排序 双路快速排序 三路快速排序 堆排序 总结与收获 参考与阅读 选择排序 选择排序是一种简单直观的排序算法,无论什么数据进去都是 O(n²) 的时间复杂度.所以用到它的时候,数据规模越小越好.唯一的好处可能就是不占用额外的内存空间了吧. 1.算法步骤 首先在未排序序列中找到最小(大)元素,存放到排…
目标检测与识别是计算机视觉中最常见的挑战之一.属于高级主题. 本章节将扩展目标检测的概念,首先探讨人脸识别技术,然后将该技术应用到显示生活中的各种目标检测. 1 目标检测与识别技术 为了与OpenCV 学习笔记 05 人脸检测和识别进行区分:需重新说明一下什么是目标检测. 目标检测是一个程序,它用来确定图像的某个区域是否有要识别的对象,对象识别是程序识别对象的能力.识别通常只处理已检测到对象的区域.若人们总是会在有人脸图像的区域去识别人脸. 在计算机视觉中有很多目标检测和识别的技术,本章会用到:…
函数中的代码是部分代码,详细代码在最后 1 cv2.boundingRect 作用:矩形边框(boundingRect),用于计算图像一系列点的外部矩形边界. cv2.boundingRect(array) -> retval 参数: array - 灰度图像(gray-scale image)或 2D点集( 2D point set ) 返回值:元组 元组(x, y, w, h ) 矩形左上点坐标,w, h 是矩阵的宽.高,例如 (161, 153, 531, 446) 代码示例: conto…
1 不同色彩空间的转换 opencv 中有数百种关于不同色彩空间的转换方法,但常用的有三种色彩空间:灰度.BRG.HSV(Hue-Saturation-Value) 灰度 - 灰度色彩空间是通过去除彩色信息来将其转换成灰阶,灰度色彩空间对中间处理特别有效,比如人脸检测 BGR - 蓝-绿-红 彩色空间,每个像素点都由一个三元数组来表示,分别代表蓝-绿-红三种颜色. HSV,Hue 表示色调,Saturation 表示饱和度,Value 表示黑暗的程度. 2 傅里叶变换 傅里叶变换的概念是许多常见…
依旧转载自作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 特征点检测学习_2(surf算法) 在上篇博客特征点检测学习_1(sift算法) 中简单介绍了经典的sift算法,sift算法比较稳定,检测到的特征点也比较多,其最大的确定是计算复杂度较高.后面有不少学者对其进行了改进,其中比较出名的就是本文要介绍的surf算法,surf的中文意思为快速鲁棒特征.本文不是专门介绍surf所有理论(最好的理论是作者的论文)的,只是对surf算法进行了…
SURF:speed up robust feature,翻译为快速鲁棒特征.首先就其中涉及到的特征点和描述符做一些简单的介绍: 特征点和描述符 特征点分为两类:狭义特征点和广义特征点.狭义特征点的位置本身具有常规的属性意义,比如角点.交叉点等等.而广义特征点是基于区域定义的,它本身的位置不具备特征意义,只代表满足一定特征条件的特征区域的位置.广义特征点可以是某特征区域的任一相对位置.这种特征可以不是物理意义上的特征,只要满足一定的数学描述就可以,因而有时是抽象的.因此,从本质上说,广义特征点可…