一.一般线性回归遇到的问题 在处理复杂的数据的回归问题时,普通的线性回归会遇到一些问题,主要表现在: 预测精度:这里要处理好这样一对为题,即样本的数量和特征的数量 时,最小二乘回归会有较小的方差 时,容易产生过拟合 时,最小二乘回归得不到有意义的结果 模型的解释能力:如果模型中的特征之间有相互关系,这样会增加模型的复杂程度,并且对整个模型的解释能力并没有提高,这时,我们就要进行特征选择. 以上的这些问题,主要就是表现在模型的方差和偏差问题上,这样的关系可以通过下图说明: (摘自:机器学习实战)…