6.RDD持久性】的更多相关文章

RDD持久性 1 Why Apache Spark 2 关于Apache Spark 3 如何安装Apache Spark 4 Apache Spark的工作原理 5 spark弹性分布式数据集 6 RDD持久性 7 spark共享变量 8 Spark SQL 9 Spark Streaming 原文链接:http://blogxinxiucan.sh1.newtouch.com/2017/07/23/RDD%E6%8C%81%E4%B9%85%E6%80%A7/ Apache Spark的主要…
基本概念 RDD spark最大的亮点是提出RDD(Resilient Distributed Dataset)的概念,也就是可伸缩的分布式数据集合,本身只读,可恢复.spark本身不做物理储存,通过保存足够的信息去实际的储存中计算出RDD RDD只要通过四种途径获取: 1.从共享的文件系统,比如HDFS 2.在驱动程序里的并行scala集合(例如数组),会发到多个节点上 3.从已存在的RDD转换 4.通过改变现有的RDD持久性.rdd是一个懒散,短暂的. 改变一个RDD的持久化通过两个动作:…
Spark Streaming 1 Why Apache Spark 2 关于Apache Spark 3 如何安装Apache Spark 4 Apache Spark的工作原理 5 spark弹性分布式数据集 6 RDD持久性 7 spark共享变量 8 Spark SQL 9 Spark Streaming 原文链接:http://blogxinxiucan.sh1.newtouch.com/2017/07/23/Spark-Streaming/ Spark Streaming使用Spar…
spark共享变量 1 Why Apache Spark 2 关于Apache Spark 3 如何安装Apache Spark 4 Apache Spark的工作原理 5 spark弹性分布式数据集 6 RDD持久性 7 spark共享变量 8 Spark SQL 9 Spark Streaming 原文链接:http://blogxinxiucan.sh1.newtouch.com/2017/07/23/spark%E5%85%B1%E4%BA%AB%E5%8F%98%E9%87%8F/ A…
Spark SQL 1 Why Apache Spark 2 关于Apache Spark 3 如何安装Apache Spark 4 Apache Spark的工作原理 5 spark弹性分布式数据集 6 RDD持久性 7 spark共享变量 8 Spark SQL 9 Spark Streaming 原文链接:http://blogxinxiucan.sh1.newtouch.com/2017/07/23/Spark-SQL/ Spark SQL提供了一种方便的方法,使用Spark Engin…
弹性分布式数据集 1 Why Apache Spark 2 关于Apache Spark 3 如何安装Apache Spark 4 Apache Spark的工作原理 5 spark弹性分布式数据集 6 RDD持久性 7 spark共享变量 8 Spark SQL 9 Spark Streaming 原文链接:http://blogxinxiucan.sh1.newtouch.com/2017/07/23/spark%E5%BC%B9%E6%80%A7%E5%88%86%E5%B8%83%E5%…
Apache Spark的工作原理 1 Why Apache Spark 2 关于Apache Spark 3 如何安装Apache Spark 4 Apache Spark的工作原理 5 spark弹性分布式数据集 6 RDD持久性 7 spark共享变量 8 Spark SQL 9 Spark Streaming 原文链接:http://blogxinxiucan.sh1.newtouch.com/2017/07/23/Apache-Spark%E7%9A%84%E5%B7%A5%E4%BD…
如何安装Apache Spark 1 Why Apache Spark 2 关于Apache Spark 3 如何安装Apache Spark 4 Apache Spark的工作原理 5 spark弹性分布式数据集 6 RDD持久性 7 spark共享变量 8 Spark SQL 9 Spark Streaming 原文链接:http://blogxinxiucan.sh1.newtouch.com/2017/07/23/%E5%A6%82%E4%BD%95%E5%AE%89%E8%A3%85A…
Why Apache Spark? 1 Why Apache Spark 2 关于Apache Spark 3 如何安装Apache Spark 4 Apache Spark的工作原理 5 spark弹性分布式数据集 6 RDD持久性 7 spark共享变量 8 Spark SQL 9 Spark Streaming 原文链接:http://blogxinxiucan.sh1.newtouch.com/2017/07/23/Why-Apache-Spark/ 我们生活在"大数据"的时代…
关于Apache Spark 1 Why Apache Spark 2 关于Apache Spark 3 如何安装Apache Spark 4 Apache Spark的工作原理 5 spark弹性分布式数据集 6 RDD持久性 7 spark共享变量 8 Spark SQL 9 Spark Streaming 原文链接:http://blogxinxiucan.sh1.newtouch.com/2017/07/23/关于Apache-Spark/ Apache Spark是一个开放源码,Had…
[编者按]时至今日,Spark已成为大数据领域最火的一个开源项目,具备高性能.易于使用等特性.然而作为一个年轻的开源项目,其使用上存在的挑战亦不可为不大,这里为大家分享SciSpike软件架构师Ashwini Kuntamukkala在Dzone上进行的Spark入门总结(虽然有些地方基于的是Spark 1.0版本,但仍然值得阅读)—— Apache Spark:An Engine for Large-Scale Data Processing,由OneAPM工程师翻译. 本文聚焦Apache…
Tuning Spark 数据序列化 内存调优 内存管理概述 确定内存消耗 调整数据结构 序列化 RDD 存储 垃圾收集调整 其他注意事项 并行度水平 减少任务的内存使用 广播大的变量 数据本地化 概要 由于大多数 Spark 计算的内存性质, Spark 程序可能由集群中的任何资源( CPU ,网络带宽或内存)导致瓶颈. 通常情况下,如果数据有合适的内存,瓶颈就是网络带宽,但有时您还需要进行一些调整,例如 以序列化形式存储 RDD 来减少内存的使用. 本指南将涵盖两个主要的主题:数据序列化,这…
官方原文: RDD Persistence One of the most important capabilities in Spark is persisting (or caching) a dataset in memory across operations. When you persist an RDD, each node stores any partitions of it that it computes in memory and reuses them in other…
Spark Overview(Spark概述) ·Apache Spark是一种快速通用的集群计算系统. ·它提供Java,Scala,Python和R中的高级API,以及支持通用执行图的优化引擎. ·它还支持丰富的高级工具集,包括用于SQL和结构化数据处理的Spark SQL,用于机器学习的MLlib,用于图形处理的GraphX和Spark Streaming Security(安全性) ·Spark中的安全性默认为OFF. ·这可能意味着您很容易受到默认攻击. ·在下载和运行Spark之前,…
1. RDD是什么RDD:Spark的核心概念是RDD (resilient distributed dataset),指的是一个只读的,可分区的弹性分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间可重复使用. 2. 为什么会产生RDD? (1)传统的MapReduce虽然具有自动容错.平衡负载和可拓展性的优点,但是其最大缺点是采用非循环式的数据流模型,使得在迭代计算式中要进行大量的磁盘IO操作.RDD正是解决这一缺点的抽象方法. (2)RDD是一种有容错机制的特殊集合,可以分…
在Spark集群背后,有一个非常重要的分布式数据架构,即弹性分布式数据集(Resilient Distributed DataSet,RDD),它是逻辑集中的实体,在集群中的多台集群上进行数据分区.通过对多台机器上不同RDD分区的控制,能够减少机器之间的数据重排(Data Shuffle).Spark提供了“partitionBy”运算符,能够通过集群中多台机器之间对原始RDD进行数据再分配来创建一个新的RDD.RDD是Spark的核心数据结构,通过RDD的依赖关系形成Spark的调度顺序.通过…
http://spark.apache.org/docs/latest/rdd-programming-guide.html#using-the-shell Overview(概述) 在较高的层次上,每个Spark应用程序都包含一个驱动程序,该程序运行用户的主要功能并在集群上执行各种并行操作. Spark提供的主要抽象是弹性分布式数据集(RDD),它是跨群集节点分区的元素集合,可以并行操作. RDD是通过从Hadoop文件系统(或任何其他Hadoop支持的文件系统)中的文件或驱动程序中的现有Sc…
摘要: 1.RDD的五大属性 1.1 partitions(分区) 1.2 partitioner(分区方法) 1.3 dependencies(依赖关系) 1.4 compute(获取分区迭代列表) 1.5 preferedLocations(优先分配节点列表) 2.RDD实现类举例 2.1 MapPartitionsRDD 2.2 ShuffledRDD 2.3 ReliableCheckpointRDD 3.RDD可以嵌套吗? 内容: 1.RDD的五大属性 1.1partitions(分区…
本篇接着谈谈那些稍微复杂的API. 1)   flatMapValues:针对Pair RDD中的每个值应用一个返回迭代器的函数,然后对返回的每个元素都生成一个对应原键的键值对记录 这个方法我最开始接触时候,总是感觉很诧异,不是太理解,现在回想起来主要原因是我接触的第一个flatMapValues的例子是这样的,代码如下: val rddPair: RDD[(String, Int)] = sc.parallelize(List(("x01", 2), ("x02"…
本篇接着讲解RDD的API,讲解那些不是很容易理解的API,同时本篇文章还将展示如何将外部的函数引入到RDD的API里使用,最后通过对RDD的API深入学习,我们还讲讲一些和RDD开发相关的scala语法. 1)  aggregate(zeroValue)(seqOp,combOp)  该函数的功能和reduce函数一样,也是对数据进行聚合操作,不过aggregate可以返回和原RDD不同的数据类型,使用时候还要提供初始值. 我们来看看下面的用法,代码如下: val rddInt: RDD[In…
上一篇里我提到可以把RDD当作一个数组,这样我们在学习spark的API时候很多问题就能很好理解了.上篇文章里的API也都是基于RDD是数组的数据模型而进行操作的. Spark是一个计算框架,是对mapreduce计算框架的改进,mapreduce计算框架是基于键值对也就是map的形式,之所以使用键值对是人们发现世界上大部分计算都可以使用map这样的简单计算模型进行计算.但是Spark里的计算模型却是数组形式,RDD如何处理Map的数据格式了?本篇文章就主要讲解RDD是如何处理Map的数据格式.…
本文主要是讲解spark里RDD的基础操作.RDD是spark特有的数据模型,谈到RDD就会提到什么弹性分布式数据集,什么有向无环图,本文暂时不去展开这些高深概念,在阅读本文时候,大家可以就把RDD当作一个数组,这样的理解对我们学习RDD的API是非常有帮助的.本文所有示例代码都是使用scala语言编写的. Spark里的计算都是操作RDD进行,那么学习RDD的第一个问题就是如何构建RDD,构建RDD从数据来源角度分为两类:第一类是从内存里直接读取数据,第二类就是从文件系统里读取,当然这里的文件…
Spark中最核心的概念为RDD(Resilient Distributed DataSets)中文为:弹性分布式数据集,RDD为对分布式内存对象的 抽象它表示一个被分区不可变且能并行操作的数据集:RDD为可序列化的.可缓存到内存对RDD进行操作过后还可以存到内存中,下次操作直接把内存中RDD作为输入,避免了Hadoop MapReduce的大IO操作: RDD生成 Spark所要处理的任何数据都是存储在RDD之中,目前两种方式可以生成一个RDD: 1.从RDD进行转换操作 2.使用外部存储系统…
<Learning Spark>这本书算是Spark入门的必读书了,中文版是<Spark快速大数据分析>,不过豆瓣书评很有意思的是,英文原版评分7.4,评论都说入门而已深入不足,中文译版评分8.4,评论一片好评,有点意思.我倒觉得这本书可以作为官方文档的一个补充,刷完后基本上对Spark的一些基本概念.码简单的程序是没有问题的了.这本书有一个好处是它是用三门语言写的,Python/Java/Scala,所以适用性很广,我的观点是,先精通一门语言,再去学其他语言.由于我工作中比较常用…
在Spark的Rdd中,Rdd是分区的. 有时候需要重新设置Rdd的分区数量,比如Rdd的分区中,Rdd分区比较多,但是每个Rdd的数据量比较小,需要设置一个比较合理的分区.或者需要把Rdd的分区数量调大.还有就是通过设置一个Rdd的分区来达到设置生成的文件的数量. 有两种方法是可以重设Rdd的分区:分别是 coalesce()方法和repartition(). 这两个方法有什么区别,看看源码就知道了: def coalesce(numPartitions: Int, shuffle: Bool…
1.RDD -> Dataset val ds = rdd.toDS() 2.RDD -> DataFrame val df = spark.read.json(rdd) 3.Dataset -> RDD val rdd = ds.rdd 4.Dataset -> DataFrame val df = ds.toDF() 5.DataFrame -> RDD val rdd = df.toJSON.rdd 6.DataFrame -> Dataset val ds =…
RDD全称叫做弹性分布式数据集(Resilient Distributed Datasets),它是一种分布式的内存抽象,表示一个只读的记录分区的集合,它只能通过其他RDD转换而创建,为此,RDD支持丰富的转换操作(如map, join, filter, groupBy等),通过这种转换操作,新的RDD则包含了如何从其他RDDs衍生所必需的信息,所以说RDDs之间是有依赖关系的.基于RDDs之间的依赖,RDDs会形成一个有向无环图DAG,该DAG描述了整个流式计算的流程,实际执行的时候,RDD是…
原文链接:http://www.jianshu.com/p/c0181667daa0 RDD.DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同. RDD和DataFrame RDD-DataFrame 上图直观地体现了DataFrame和RDD的区别.左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解Person类的内部结构.而右侧的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数…
1.将多个文本文件读入一个RDD中 SparkConf conf=new SparkConf() .setMaster("local") .setAppName("save"); JavaSparkContext sc=new JavaSparkContext(conf); JavaRDD<String> lines=sc.textFile("student*"); lines.foreach(new VoidFunction<…
SparkContext可以通过parallelize把一个集合转换为RDD def main(args: Array[String]): Unit = { val conf = new SparkConf(); val list = List(1, 2, 3, 4, 5,6); conf.set("spark.master", "local") conf.set("spark.app.name", "spark demo")…