首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
BSGS及扩展BSGS总结(BSGS,map)
】的更多相关文章
BSGS及扩展BSGS总结(BSGS,map)
蒟蒻哪里有什么总结,只能点击%YL% 还有这位ZigZagK大佬的blog \(\mbox{BSGS}\) 模板题:洛谷P3846 [TJOI2007]可爱的质数 给定\(a,b\)和模数\(\mbox{YL}\),求\(a^x\equiv b(\bmod\mbox{YL})\)中\(x\)的最小非负整数解.保证\(\gcd(a,\mbox{YL})=1\). 设\(k=\lceil\sqrt{\mbox{YL}}\rceil\),令\(x=ky-c\)(\(y\in[1,k],c\in[0,k…
BSGS与扩展BSGS
BSGS \(BSGS\)算法又称大步小步\((Baby-Step-Giant-Step)\)算法 \(BSGS\)算法主要用于解以下同余方程 \[A^x\equiv B(mod\ p)\]其中\((A,P)=1\),即\(A\)与\(P\)互质 前置知识 根据欧拉定理\(A^{ \varphi(p)} \equiv1(mod\ p)\),所以\(A^x(mod\ p)\)的循环节为\(\varphi(p)\).也就是说如果上面的方程有解\(x\),那么肯定有\(x \in [0,\varphi…
BSGS和扩展BSGS
BSGS: 求合法的\(x\)使得\(a ^ x \quad mod \quad p = b\) 先暴力预处理出\(a^0,a^1,a^2.....a^{\sqrt{p}}\) 然后把这些都存在map里 : \(map[a^x] = x\) 一个合法的x满足\(x = k\sqrt{p} + l\)使得\(a^x = b\),因此可以直接枚举k,于是有: \[a^x = a^{k\sqrt{p}} \cdot a^l = b\] \[a^l = \frac{b}{a^{k\sqrt{p}}} =…
BSGS及扩展BSGS算法及例题
\(BSGS(baby-step-giant-step)\)算法是用来解高次同余方程的最小非负整数解的算法,即形如这个的方程: \(a^x\equiv b(mod\ p)\) 其中\(p\)为质数(其实只要(\((a,p)=1\)即可) 首先考虑暴力怎么解:由费马小定理可知\(a^{p-1}\equiv 1(mod\ p)\),也就是说如果在\([0,p-1]\)内无解的话,方程就是无解的.所以我们从小到大枚举\([0,p-1]\)中的每一个数,满足方程就结束.但是这里\(p-1\)并不一定是最…
Codeforces 1106F Lunar New Year and a Recursive Sequence (数学、线性代数、线性递推、数论、BSGS、扩展欧几里得算法)
哎呀大水题..我写了一个多小时..好没救啊.. 数论板子X合一? 注意: 本文中变量名称区分大小写. 题意: 给一个\(n\)阶递推序列\(f_k=\prod^{n}_{i=1} f_{k-i}b_i\mod P\)其中\(P=998244353\), 输入\(b_1,b_2,...,b_n\)以及已知\(f_1,f_2,...,f_{n-1}=1\), 再给定一个数\(m\)和第\(m\)项的值\(f_m\), 求出一个合法的\(f_n\)值使得按照这个值递推出来的序列满足第\(m\)项的值为…
BSGS 和扩展
BSGS BSGS,全称叫 BabyStepGiantStep,也就是大步小步 其实还是比较暴力的 它可以\(O(\sqrt p)\)的复杂度内解出: \[a^x\equiv n\pmod p,\gcd(a,p)=1 \] 中\(x\)的值 如果\(\gcd(a,p)\neq 1\)就要用到 exBSGS 了 我们考虑令\(x=im-k,0\le k<m\) 那么原式变为 \[a^{im-k}\equiv n\pmod p \] \[a^{im}\equiv na^k\pmod p \] 那么,…
BSGS及其扩展
目录 定义 原理 朴素算法 数论分块 例题 Luogu2485 [SDOI2011]计算器 题解 代码 扩展 例题 Luogu4195 [模板]exBSGS/Spoj3105 Mod 代码 之前写了一篇关于BSGS的学习笔记.因为太过老旧,就想修改一些错误,顺便添上扩展BSGS的部分.可惜博客园不能对已发布的随笔修改编辑器,索性重新发出来.旧文已删. 定义 Baby-Step-Giant-Step算法,简称BSGS算法,又称大步小步算法,用于求方程\(a^x\equiv b(\text{mod…
python3-知识扩展扫盲易忘-map,collections.Counter()的用法
map() 会根据提供的函数对指定序列做映射. 第一个参数 function 以参数序列中的每一个元素调用 function 函数,返回包含每次 function 函数返回值的新列表. >>> map(square, [1,2,3,4,5]) # 计算列表各个元素的平方[1, 4, 9, 16, 25] from collections import Counter nums1 =[1,2,3,6,6,6,7,7,7,7,8] nums2=[2,7,7] a,b = map(Coun…
数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)
注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Robin+Pollard_Rho) 本文概要 1. 基础回顾 2. 中国剩余定理 (CRT) 及其扩展 3. 卢卡斯定理 (lucas) 及其扩展 4. 大步小步算法 (BSGS) 及其扩展 5. 原根与指标入…
BSGS算法学习笔记
从这里开始 离散对数和BSGS算法 扩展BSGS算法 离散对数和BSGS算法 设$x$是最小的非负整数使得$a^{x}\equiv b\ \ \ \pmod{m}$,则$x$是$b$以$a$为底的离散对数,记为$x = ind_{a}b$. 假如给定$a, b, m$,考虑如何求$x$,或者输出无解,先考虑$(a, m) = 1$的情况. 定理1(欧拉定理) 若$(a, m) = 1$,则$a^{\varphi(m)}\equiv 1 \pmod{m}$. 证明这里就不给出,因为在百度上随便搜一…