Just the indirect specular pass by importance sampling. With all layers. Manually traced by 3D Hammersley sequence with 8 samples. Link to the paper. Actually this should be done in a pure Path Tracer with 3 random number from multiple dimension rn…
如上图所示,计算区间[a  b]上f(x)的积分即求曲线与X轴围成红色区域的面积.下面使用蒙特卡洛法计算区间[2  3]上的定积分:∫(x2+4*x*sin(x))dx # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt def f(x): return x**2 + 4*x*np.sin(x) def intf(x): return x**3/3.0+4.0*np.sin(x) - 4.0*x*n…
吻合度蛮高,但不光滑. > L= > K=/ > x=runif(L) > *x*(-x)^/K)) > hist(x[ind],probability=T, + xlab="x",ylab="Density",main="") /* 应用了平滑数据的核函数 */ > d=density(x[,to=) // 只对标记为true的x做统计 --> 核密度估计 > lines(d,col=) // (…
用蒙特卡洛求解积分时 (Monte Carlo 随机采样对目标积分函数做近似) importance sampling func p(x) p(x)值大的地方,Monte Carlo多采几次 值小的地方,少采样一些. 一起贡献MC的积分值 http://blog.sina.com.cn/s/blog_4e5740460100cw5b.html link1 http://statweb.stanford.edu/~owen/mc/ 对 GGX的importance的理解 ImportanceSam…
目录 概 主要内容 "代码" Katharopoulos A, Fleuret F. Not All Samples Are Created Equal: Deep Learning with Importance Sampling[J]. arXiv: Learning, 2018. @article{katharopoulos2018not, title={Not All Samples Are Created Equal: Deep Learning with Importanc…
分类: 我叫学术帖2011-03-25 13:22 3232人阅读 评论(4) 收藏 举报 图形 重要性采样是非常有意 思的一个方法.我们首先需要明确,这个方法是基于采样的,也就是基于所谓的蒙特卡洛法(Monte Carlo).蒙特卡洛法,本身是一个利用随机采样对一个目标函数做近似.例如求一个稀奇古怪的形状的面积,如果我们没有一个解析的表达方法,那么怎么做 呢?蒙特卡洛法告诉我们,你只要均匀的在一个包裹了这个形状的范围内随机撒点,并统计点在图形内的个数,那么当你撒的点很多的时候,面积可以近似为=…
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hybrid Monte Carlo. 上一章讲到的平均场是统计物理学中常用的一种思想,将无法处理的复杂多体问题分解成可以处理的单体问题来近似,变分推断便是在平均场的假设约束下求泛函L(Q)极值的最优化…
本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到PRML的笔记中去:) 背景 随机模拟也可以叫做蒙特卡罗模拟(Monte Carlo Simulation).这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯.诺依曼.费米.费曼.Nicholas Metropolis, 在美国洛斯阿拉莫斯国家实验室…
In statistics and in statistical physics, Gibbs sampling or a Gibbs sampler is aMarkov chain Monte Carlo (MCMC) algorithm for obtaining a sequence of observations which are approximated from a specifiedmultivariate probability distribution (i.e. from…
I used to implement the Energy-Conserving Hair Scattering Model as the pre-calculation program, so that now spent a day to implement the all stuff as the shader in Arnold. Next step is to implement this model with importance sampling as the paper “Im…
runifum Inversion Sampling 看样子就是个路人甲. Ref: [Bayes] Hist & line: Reject Sampling and Importance Sampling > func=function(n) { + *runif(n))) + } // 反函数的x的均匀sampling值 => y 就是原函数的x,刚好作为hist的输入参数 > hist(),probability=T, xlab=expression(theta), yla…
Ref: http://blog.csdn.net/xianlingmao/article/details/7768833 通常,我们会遇到很多问题无法用分析的方法来求得精确解,例如由于式子特别,真的解不出来: 一般遇到这种情况,人们经常会采用一些方法去得到近似解,已经近似程度. 本文要谈的随机模拟就是这么一类近似求解的方法. 它的诞生虽然最早可以追溯到18xx年法国数学家蒲松的投针问题(用模拟的方法来求解\pi的问题),但是真正的大规模应用还是被用来解决二战时候美国生产原子弹所碰到的各种难以解…
1.基本采样算法(Basic Sampling Algorithms) 1.1.标准概率分布(Standard distributions) 1.2.拒绝采样(Rejection sampling) 1.3.可调节的拒绝采样(Adaptive rejection sampling) 1.4.重要采样(Importance sampling) 1.5.采样-重要性-重采样(Sampling-importance-resampling) 1.6.采样与EM算法(Sampling and EM alg…
转载请注明出处:Bin的专栏,http://blog.csdn.net/xbinworld 本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到PRML的笔记中去:) 背景 随机模拟也可以叫做蒙特卡罗模拟(Monte Carlo Simulation).这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯…
[softmax分类器的加速器] https://www.tensorflow.org/api_docs/python/tf/nn/sampled_softmax_loss This is a faster way to train a softmax classifier over a huge number of classes. [分类的结果集过大,选取子集] https://www.tensorflow.org/api_guides/python/nn#Candidate_Samplin…
转自:http://blog.csdn.net/xianlingmao/article/details/7768833 引入 我们会遇到很多问题无法用分析的方法来求得精确解,例如由于式子特别,真的解不出来.这时就需要找一种方法求其近似解,并且有手段能测量出这种解的近似程度 (比如渐进性,上下限什么的) 随机模拟的基本思想 现在假设我们有一个矩形的区域R(大小已知),在这个区域中有一个不规则的区域M(即不能通过公式直接计算出来),现在要求取M的面积? 怎么求?近似的方法很多,例如:把这个不规则的区…
本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到PRML的笔记中去:) 背景 随机模拟也可以叫做蒙特卡罗模拟(Monte Carlo Simulation).这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯.诺依曼.费米.费曼.Nicholas Metropolis, 在美国洛斯阿拉莫斯国家实验室…
Awesome Courses  Introduction There is a lot of hidden treasure lying within university pages scattered across the internet. This list is an attempt to bring to light those awesome courses which make their high-quality material i.e. assignments, lect…
Prioritized Experience Replay JAN 26, 2016 Schaul, Quan, Antonoglou, Silver, 2016 This Blog from: http://pemami4911.github.io/paper-summaries/2016/01/26/prioritizing-experience-replay.html Summary Uniform sampling from replay memories is not an effic…
目录 一. 前言 1.1 本文动机 1.2 PBR知识体系 1.3 本文内容及特点 二. 初阶:PBR基本认知和应用 2.1 PBR的基本介绍 2.1.1 PBR概念 2.1.2 与物理渲染的差别 2.1.3 PBR的特征 2.2 PBR的衍变历史 2.2.1 Lambert(1760年) 2.2.2 Smith(1967年) 2.2.3 Phong(1973年) 2.2.4 Cook-Torrance(1982年) 2.2.5 Oren Nayarh(1994年) 2.2.6 Schlick(…
Lecture note 5: word2vec + manage experiments Word2vec Most of you are probably already familiar with word embedding and understand the importance of a model like word2vec. For those who aren't, Stanford CS 224N's lecture on word vectors is a great r…
目录 一.光线追踪概述 1.1 光线追踪是什么 1.2 光线追踪的特点 1.3 光线追踪的历史 1.4 光线追踪的应用 二.光线追踪的原理 2.1 光线追踪的物理原理 2.2 光线追踪算法 2.3 RTX和DXR 2.3.1 RTX(NV) 2.3.2 DXR(Microsoft) 三.UE4的光线追踪 3.1 UE4光线追踪的开启 3.2 UE4光线追踪的特性 3.2.1 光线追踪的阴影 3.2.2 光线追踪的反射 3.2.3 光线追踪的透明 3.2.4 光线追踪的环境光遮蔽 3.2.5 光线…
CSharpGL(54)用基于图像的光照(IBL)来计算PBR的Specular部分 接下来本系列将通过翻译(https://learnopengl.com)这个网站上关于PBR的内容来学习PBR(Physically Based Rendering). 本文对应(https://learnopengl.com/PBR/IBL/Specular-IBL). +BIT祝威+悄悄在此留下版了个权的信息说: 原文虽然写得挺好,但是仍旧不够人性化.过一阵我自己总结总结PBR,写一篇更容易理解的. 正文…
from: http://www.metacademy.org/roadmaps/rgrosse/bayesian_machine_learning Created by: Roger Grosse(http://www.cs.toronto.edu/~rgrosse/) Intended for: beginning machine learning researchers, practitioners Bayesian statistics is a branch of statistics…
Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Error, 相对误差和) MSE(Mean Squared Error, 均方误差) RMSE(Root Mean Squared Error, 均方根误差) RRSE(Root Relative Squared Error, 相对平方根误差) MAE(Mean Absolute Error, 平均绝…
从随机过程到马尔科夫链蒙特卡洛方法 1. Introduction 第一次接触到 Markov Chain Monte Carlo (MCMC) 是在 theano 的 deep learning tutorial 里面讲解到的 RBM 用到了 Gibbs sampling,当时因为要赶着做项目,虽然一头雾水,但是也没没有时间仔细看.趁目前比较清闲,把 machine learning 里面的 sampling methods 理一理,发现内容还真不少,有些知识本人也是一知半解,所以这篇博客不可…
1     问题描述 LDA由Blei, David M..Ng, Andrew Y..Jordan于2003年提出,是一种主题模型,它可以将文档集中每篇文档的主题以概率分布的形式给出,从而通过分析一些文档抽取出它们的主题(分布)出来后,便可以根据主题(分布)进行主题聚类或文本分类.此外,一篇文档可以包含多个主题,文档中每一个词都由其中的一个主题生成. 人类是怎么生成文档的呢?LDA的这三位作者在原始论文中给了一个简单的例子.比如假设事先给定了这几个主题:Arts.Budgets.Childre…
蒙特卡洛马尔科夫链(MCMC) 标签: 机器学习重要性采样MCMC蒙特卡洛 2016-12-30 20:34 3299人阅读 评论(0) 收藏 举报  分类: 数据挖掘与机器学习(41)  版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   在以贝叶斯方法为基础的机器学习技术中,通常需要计算后验概率,然后通过最大后验概率(MAP)等方法进行参数推断和决策.然而,在很多时候,后验分布的形式可能非常复杂,这个时候寻找其中的最大后验估计或者对后验概率进行积分等计算往往非常困…
前言 论文“Deep Boltzmann Machines”是Geoffrey Hinton和他的大牛学生Ruslan Salakhutdinov在论文“Reducing the Dimensionality of Data with Neural Networks”合作后的又一次联合发表的一篇有深远影响的论文,这篇论文第一次提出了DBM及其学习方法,对DBM原理.来源都做了详细讲解. 论文内容 前面介绍的都是BM原理及其训练,可以不用管它,下面直接从第3节开始…… 3.DBM 一般情况下,我们…
贝叶斯集锦(3):从MC.MC到MCMC 2013-07-31 23:03:39 #####一份草稿 贝叶斯计算基础 一.从MC.MC到MCMC 斯坦福统计学教授Persi Diaconis是一位传奇式的人物.Diaconis14岁就成了一名魔术师,为了看懂数学家Feller的概率论著作,24岁时进入大学读书.他向<科学美国人>投稿介绍他的洗牌方法,在<科学美国人>上常年开设数学游戏专栏的著名数学科普作家马丁•加德纳给他写了推荐信去哈佛大学,当时哈佛的统计学家Mosteller 正…