一:上代码 #比例法def rate_method(p,n):    lst =[] #保存各组席位数    sum_ =sum(p)    #人数和    k =0#临时变量    for i in p:        lst.append(i/sum_*n)        k += int(i/sum_*n)     while k!=n:        max_ =0        for i in lst:            max_ =i if (i -int(i)) > max_…
Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学建模新手入门 『Python 数学建模 @ Youcans』 系列 是专门为学习数学建模.准备数模竞赛的小白准备的系列教程. [Python数学建模-01.新手必读] 主要讨论小白刚刚接触数学建模的几个困惑: 学习数学建模难不难?应该怎么学? 学习数学建模选择什么计算机语言最好?我要学 Matlab…
  本篇博文为追忆以前写过的算法系列第四篇 温故知新 本篇于2009年发表于百度博客,当时还没接触CSDN.所以是文学和技术博客混淆,只是这个程序博文訪问量突破2000,有不少网友评论互动.应该对非常多人有一定的帮助. 程序介绍了数学建模中经典问题的两种解法,即席位分配问题! %适用于全部情况 BY Gu clear all clc %惯例Q值法分配席位,wy为席位数.ps为人数总和,R为分配方案 wy=19; P=[103 63 34] %菜单选项 MENUN=menu('选择方法','…
内容介绍 本书全面.系统地讲解了数学建模的知识.书中结合历年全国大学生数学建模竞赛试题,采用案例与算法程序相结合的方法,循序渐进,逐步引导读者深入挖掘实际问题背后的数学问题及求解方法.在本书案例的分析计算中巧妙地结合了MATLAB等工具,并采用不同的算法进行模型求解,达到异曲同工之妙.本书结合实际,对网上讨论的很多疑难问题也做了解答. 本书共25章,分3篇.主要内容有:MATLAB基础知识.LINGO基础知识.SPSS基础知识.数学建模基础理论及算法设计.基于LINGO的基础理论及算法设计.企业…
Python小白的数学建模课 A1-2021年数维杯C题(运动会优化比赛模式探索)探讨. 运动会优化比赛模式问题,是公平分配问题 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 2021第六届数维杯大学生数学建模 赛题已于5月27日公布,C题是"运动会优化比赛模式探索".本文对赛题进行一些分析讨论.由于竞赛时间为 2021年5月27-30日20:00,目前尚处于竞赛中,本文仅做初步分析. 1. 赛题内容(运动会优化比赛模式探索) 在大学的运动会中,由于…
为期三周的数学建模国赛培训昨天正式结束了,还是有一定的收获的,尤其是在MATLAB的使用上. 1. 一些MATLAB的基础性东西: 元胞数组的使用:http://blog.csdn.net/z1137730824/article/details/39206823 对于任意文件夹的同一格式的图片的批量读取:http://blog.csdn.net/haizimin/article/details/39646595 关于MATLAB在微分/偏微分方程以及其他高等数学问题中的应用. 关于MATLAB在…
今天进入数学建模经验谈第六天:组队建议和比赛流程建议 数学模型的组队非常重要,三个人的团队一定要有分工明确而且互有合作,三个人都有其各自的特长,这样在某方面的问题的处理上才会保持高效率. 三个人的分工可以分为这几个方面: 数学员:学习过很多数模相关的方法.知识,无论是对实际问题还是数学理论都有着比较敏感的思维能力,知道一个问题该怎样一步步经过化简而变为数学问题,而在数学上又有哪些相关的方法能够求解,他可以不会编程,但是要精通算法,能够一定程度上帮助程序员想算法,总之,数学员要做到的是能够把一个问…
下面进入数学建模经验谈第五天:怎样问数学模型问题 写这一篇的目的主要在于帮助大家能更快地发现问题和解决问题,让自己的模型思路有一个比较好的形成过程. 在我们学习数学模型.准备比赛的时候,经常会遇到各种各样的问题,有关于算法的,模型建立的,还有直接的题目思路,我在做数学中国版主这些天里,也经常力所能及地解决大家提出的各种问题,既有同学是一句简单的话:求XX算法相关资料,也有的干脆摆上来一道校赛题,我很乐意和负责地为大家解决疑问,也对支持数学中国,相信数学中国的各位同学表示感谢! 同时,也有一些在问…
本文进入到数学建模七日谈第四天:数学模型分类浅谈 大家常常问道,数学模型到底有哪些,分别该怎么学习,这样能让我们的学习有的放矢,而不至于没了方向.我想告诉大家,现实生活中的问题有哪些类,数学模型就有哪些类,因为说到底,数学模型是用来解决实际问题的,解决那些当我们缺乏某一方面足够的经验时,定量化地依靠数字来解决问题的办法. 于是,们可以想想,在现实生活中,我们能够遇到哪些需要定量化解决的问题,而这些问题能否利用数学工具加以解决. 优化类问题:我们常常需要对某些行为进行决策,这些是我们可以控制的因素…
前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进行过模拟比赛,恐怕还是会捉襟见肘,不能够游刃有余地应对真正比赛中可能会遇到的一些困难.笔者就自己的经验稍稍给大家谈谈,在看了很多数学模型的书籍之后,如何通过论文阅读,将我们的水平上升一个新的台阶,达到一个质的飞跃! 首先,大家要搞清楚教材和论文的区别.教材的主要目的是介绍方法,前人总结出来的最经典的…
今天进入我们数学建模七日谈的第二天:怎样阅读数学建模教材? 大家再学习数学建模这门课程或准备比赛的时候,往往都是从教材开始的,教材的系统性让我们能够很快,很深入地了解前人在数学模型方面已有的研究成果,并最快地吸收他们为自己所用,但是常常有很多同学抱怨说书太厚,介绍太过于简略而无法看懂,操作性不强等等,也不知道读哪本书更好,把每个模型应该掌握到哪个地步而没有方向,更害怕浪费了宝贵的时间.在此,笔者向大家隆重推荐建模教程学习的基本要领:三步阅读法. 对于任何一本教材,一份资料里介绍的一种数学模型的建…
前言 不管是不是巴萨的球迷,只要你喜欢足球,就一定听说过梅西(Messi).苏亚雷斯(Suarez)和内马尔(Neymar)这个MSN组合.在众多的数学建模辅助工具中,也有一个犀利无比的MSN组合,他们就是python麾下大名鼎鼎的 Matplotlib + Scipy + Numpy三剑客. 本文是我整理的MSN学习笔记,有些理解可能比较肤浅,甚至是错误的.如果因此误导了某位看官,在工作中造成重大失误或损失,我顶多只能赔偿一顿饭——还得是我们楼下的十元盒饭.特此声明. 文中代码均从我的这台时不…
建模比赛已经过去三天了,但留校的十多天里,自己的收获与感受依然长存于心.下面的大致流程,很多并没有细化,下面很多情况都是在假设下进行的,比如假设飞机能够来回运送药品,运货无人机就只运货,在最大视距下侦查等. 题目下载:点击下载 首先,因为这道题中的变量太多,我们需要对变量的数量进行减小. 一.变量设置 二.约束条件 1.从基地运输到医院的药包量必须满足医院的需求. 2.无人机最大行驶距离能否满足来回医院. 三.目标函数 1.计算基地到医院的时间: 2.我们希望时间最优(最短),则取满足约束条件b…
2018数学建模已经告一段落了,先说说基本情况吧,我们队伍专业分别为:金融(A),会计(B),计算机(我),配置还算可以,他们俩会数据分析软件也会写论文,我可以写代码,画图.他们俩打过美赛(M奖),我只打过算法竞赛.这里特别提出,有会写论文的队友很重要,不是说会latex会排版就算会,还要知道论文基本架构,遣词造句,专业术语等等. 题目下来的晚上,我们就确定了A题,因为B题的话我们基本没有专业知识能用上的,什么都要现学,其实特别想做C题,推荐系统啊,经济学分析啊我们都做过,可惜选不了….确定题目…
一直都想参加下数学建模,通过几个月培训学到一些好的数学思想和方法,今年终于有时间有机会有队友一起参加了研究生数模,but,为啥今年说不培训直接参加国赛,泪目~_~~,然后比赛前也基本没看,直接硬刚.比赛完总结下是个好习惯,下面写了一点分析,比较注重实现,有些地方我也不能讲很清楚,看过的请权当参考. 问题1:对一个不包含动态背景.摄像头稳定拍摄时间大约5秒的监控视频,构造提取前景目标(如人.车.动物等)的数学模型,并对该模型设计有效的求解方法,从而实现类似图1的应用效果.(附件2提供了一些符合此类…
大家好,我是数学中国的版主magic2728,非常高兴能够借助数学中国这个平台分享一些自己的经验,帮助大家在国赛的最后备战中能够最后冲刺提高.分享一共分为七个部分,分七天写给大家,下面是第一个部分:参加全国大学生数学建模比赛前你需要积累哪些. 大家知道,数学模型是一个庞大的议题,关于它的各种资料.知识点也是浩如烟海,难免会让很多初学者不知所措,很多同学在准备过程中觉得无从下手,因为感觉到学过的东西比赛中好像都没有用,然而比赛的时候又没有自己的思路,很是苦恼,导致很多同学中途放弃,投入的时间精力石…
内容介绍 本书深入浅出地介绍了LINGO的基础知识.用LINGO语言描述现实问题的方法和用Excel处理数据的方法,重点是这两种软件在解决各种优化问题以及在数学建模中的应用,通过丰富的实例介绍了把实际问题转化为数学模型的方法,以及综合运用LINGO等软件来求解模型的手段和技巧. 本书的主要内容包括LINGO的基本用法.LINGO在图论和网络模型中的应用.用LINGO求解非线性规划和多目标规划.LINGO与其他软件之间的数据传递.Excel在数学建模中的应用和LINGO在数学建模中的应用实例等.…
一.学习目标. (1)了解Matlab与数学建模竞赛的关系. (2)掌握Matlab数学建模的第一个小实例—评估股票价值与风险. (3)掌握Matlab数学建模的回归算法. 二.实例演练. 1.谈谈你对Matlab与数学建模竞赛的了解. Matlab在数学建模中使用广泛:MATLAB 是公认的最优秀的数学模型求解工具,在数学建模竞赛中超过 95% 的参赛队使用 MATLAB 作为求解工具,在国家奖队伍中,MATLAB 的使用率几乎 100%.虽然比较知名的数模软件不只 MATLAB. 人们喜欢使…
关键词:Python.调包.线性规划.指派问题.运输问题.pulp.混合整数线性规划(MILP) 注:此文章是线性规划的调包实现,具体步骤原理请搜索具体解法.   本文章的各个问题可能会采用多种调用方法,为什么?因为这些包各有特点,有些语法特别像matlab,只要稍稍改变即可达成代码交换:而有些包利用了python本身的特性,在灵活度与代码的可读性上更高.我认为这些包各有优劣,各位各持所需吧.   看了本文章能做到什么?你可以在本文章内学到线性规划的几个问题的求解方式,并学会如何用pulp包解决…
在本文中,我想将经典数学建模和机器学习之间建立联系,它们以完全不同的方式模拟身边的对象和过程.虽然数学家基于他们的专业知识和对世界的理解来创建模型,而机器学习算法以某种隐蔽的不完全理解的方式描述世界,但是在大多数情况下甚至比专家开提出的数学模型更准确.然而,在许多应用程序(如医疗保健,金融,军事)中,我们需要清晰可解释的决策,而机器学习算法,特别是深度学习模型并不是这样设计的. 本文将回顾所期望模型的的主要特点,"经典"数学模型和机器学习模型的优点和缺点,并展示一个结合了两种模型特点的…
数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入是所有数模编程的第一步 编程求解一个数模问题,问题总会涉及一些数据. 有些数据是在题目的文字描述中给出的,有些数据是通过题目的附件文件下载或指定网址提供的,还有些数据是需要自己搜集的.不论是哪种方式获得的数据,也不论哪种类型的问题和算法,首先都是要把这些数据以适当的方式和格式导入到程序中. 如果数据…
线性规划是很多数模培训讲的第一个算法,算法很简单,思想很深刻. 要通过线性规划问题,理解如何学习数学建模.如何选择编程算法. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 1. 求解方法.算法和编程方案 线性规划 (Linear Programming,LP) 是很多数模培训讲的第一个算法,算法很简单,思想很深刻. 线性规划问题是中学数学的内容,鸡兔同笼就是一个线性规划问题.数学规划的题目在高考中也经常出现,有直接给出线性约束条件求线性目标函数极值,有间接给出…
整数规划与线性规划的差别只是变量的整数约束. 问题区别一点点,难度相差千万里. 选择简单通用的编程方案,让求解器去处理吧. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 1. 从线性规划到整数规划 1.1 为什么会有整数规划? 线性规划问题的最优解可能是分数或小数.整数规划是指变量的取值只能是整数的规划. 这在实际问题中很常见,例如车间人数.设备台数.行驶次数,这些变量显然必须取整数解. 整数规划并不一定是线性规划问题的变量取整限制,对于二次规划.非线性规划问…
0-1 规划不仅是数模竞赛中的常见题型,也具有重要的现实意义. 双十一促销中网购平台要求二选一,就是互斥的决策问题,可以用 0-1规划建模. 小白学习 0-1 规划,首先要学会识别 0-1规划,学习将问题转化为数学模型. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 1. 什么是 0-1 规划? 0-1 整数规划是一类特殊的整数规划,变量的取值只能是 0 或 1. 0-1 变量可以描述开关.取舍.有无等逻辑关系.顺序关系,可以处理背包问题.指派问题.选址问题…
新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 0. 前言:新冠疫情成了数模竞赛的背景帝 新冠疫情爆发以来,不仅严重影响到全球的政治和经济,也深刻和全面地影响着社会和生活的方方面面,甚至已经成为数学建模竞赛的背景帝. 传染病模型本来就是数学建模课程中的常见问题和模型.随着疫情的影响越来越严重.广泛和持久,不仅疫情传播.疫…
选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. 欢迎关注『Python小白的数学建模课 @ Youcans』系列,每周持续更新 1. 选址问题 选址问题是指在某个区域内选择设施的位置使所需的目标达到最优.选址问题也是一种互斥的计划问题. 例如投资场所的选址:企业要在 m 个候选位置选择若干个建厂,已知建厂费用.运输费及 n 个地区的产品需求量,…
非线性规划是指目标函数或约束条件中包含非线性函数的规划问题,实际就是非线性最优化问题. 从线性规划到非线性规划,不仅是数学方法的差异,更是解决问题的思想方法的转变. 非线性规划问题没有统一的通用方法,我们在这里学习的当然不是数学方法,而是如何建模.如何编程求解. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 1. 从线性规划到非线性规划 本系列的开篇我们介绍了线性规划 (Linear Programming) 并延伸到整数规划.0-1规划,以及相对复杂的固定费…
流在生活中十分常见,例如交通系统中的人流.车流.物流,供水管网中的水流,金融系统中的现金流,网络中的信息流.网络流优化问题是基本的网络优化问题,应用非常广泛. 网络流优化问题最重要的指标是边的成本和容量限制,既要考虑成本最低,又要满足容量限制,由此产生了网络最大流问题.最小费用流问题.最小费用最大流问题. 本文基于 NetworkX 工具包,通过例程详细介绍网络最大流问题.最小费用流问题.最小费用最大流问题的建模和编程. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛…
今天在阅读数学建模的时候看到了差分那章 其中有一个用matlab求线性的代码,这里我贴出来 这里我送上 Python代码 In [39]: import numpy as np ...: from scipy.optimize import nnls ...: x = np.array([[1,2,3,4,5],[1,1,1,1,1]]) ...: x = x.T ...: y = np.array([11,12,13,15,16]) ...: nnls(x,y) ...: Out[39]: (…
经过前面六天的文章分享,相信大家对数学模型的相关准备.学习都有了更新的认识,希望大家能从中有所收获,以便更高效地准备比赛和学习数学模型,本文是数学建模经验谈的最后一天:临近比赛的准备工作,希望在临近比赛的时候能够助推大家获得最后的提升!下面是正文. 学习数模到最后参加数模比赛是一个持久战,在这持续很长的时间里除了坚持,有恒心,有毅力之外,还有一点重要的,就是状态的调整,良好的状态是成功的保证.比赛前,我们在知识,心态,身体状态上都应该达到一个比较协调的状态,才能有能力应对三天三夜的挑战,下面就我…