Dirichlet Process】的更多相关文章

Notes on the Dirichlet Distribution and Dirichlet Process In [3]: %matplotlib inline   Note: I wrote this post in an IPython notebook. It might be rendered better on NBViewer. Dirichlet Distribution The symmetric Dirichlet distribution (DD) can be co…
Dirichlet Process 和 Dirichlet Process Mixture模型 [本文链接:http://www.cnblogs.com/breezedeus/archive/2012/11/05/2754940.html,转载请注明出处.] Dirichlet Process (DP)被称为分布的分布.从DP抽取出的每个样本(一个函数)都可以被认为是一个离散随机变量的分布函数,这个随机变量以非零概率值在可数无穷个离散点上取值.比较有意思的是,从DP可以推导出几个非常著名的问题:…
来源:http://hi.baidu.com/vyfrcemnsnbgxyd/item/2f10ecc3fc35597dced4f88b Dirichlet Process(DP)是一个很重要的统计模型,其可以看做是Dirichlet分布的一种在连续空间的推广过程.在统计学习中,DP尤其是其变形有很多 重要应用,是非参贝叶斯学习的重要方法.不过目前缺乏对于这样一个模型的入门级的介绍,本文将会介绍如何从Dirichlet分布演变到 Dirichlet Process,从而帮助大家更容易地踏入这个领…
狄利克雷过程(dirichlet process )的五种理解  原文:http://blog.csdn.net/xianlingmao/article/details/7342837   无参数贝叶斯方法: Nonparametric Bayesian methods (Dirichlet processes)   狄利克雷过程(dirichlet process )是目前变参数学习(non parameter)非常流行的一个理论,很多的工作都是基于这个理论来进行的,如HDP(hierarch…
http://www.cnblogs.com/zhangbojiangfeng/p/5962039.html [各种函数推导]…
0. 引入 现观察得到两个样本 θ1,θ2,来推测它们可能来自的分布: 假设来自于连续型概率密度函数, θ1,θ2∼H(θ) 则 θ1,θ2 相等的概率为 0,p(θ1=θ2)=0 概率为 0,不代表不可能发生,仍有发生的可能,只不过概率的测度为 0:(详见测度论相关知识) 纵然二者仍有可能相等,但因其概率测度为 0,实际上我们也只能视二者为不同的值: 假设来自于一种离散型概率质量函数,我们仍希望其具有与连续型分布函数相类似的形式,记此时的离散分布为 G,想要其与连续型概率密度函数形式相近,又不…
多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&&sectionid=983 二项分布和多项分布 http://blog.csdn.net/shuimu12345678/article/details/30773929 0-1分布: 在一次试验中,要么为0要么为1的分布,叫0-1分布. 二项分布: 做n次伯努利实验,每次实验为1的概率为p,实验为0的概率为1-p;有k次为1,n-k次为0的概率,就是二项分布B(n,p,…
The Dirichlet Distribution 狄利克雷分布 (PRML 2.2.1) Dirichlet分布可以看做是分布之上的分布.如何理解这句话,我们可以先举个例子:假设我们有一个骰子,其有六面,分别为{1,2,3,4,5,6}.现在我们做了10000次投掷的实验,得到的实验结果是六面分别出现了{2000,2000,2000,2000,1000,1000}次,如果用每一面出现的次数与试验总数的比值估计这个面出现的概率,则我们得到六面出现的概率,分别为{0.2,0.2,0.2,0.2,…
Dirichlet分布可以看做是分布之上的分布.如何理解这句话,我们可以先举个例子:假设我们有一个骰子,其有六面,分别为{1,2,3,4,5,6}.现在我们做了10000次投掷的实验,得到的实验结果是六面分别出现了{2000,2000,2000,2000,1000,1000}次,如果用每一面出现的次数与试验总数的比值估计这个面出现的概率,则我们得到六面出现的概率,分别为{0.2,0.2,0.2,0.2,0.1,0.1}.现在,我们还不满足,我们想要做10000次试验,每次试验中我们都投掷骰子10…
在看LDA的时候,遇到的数学公式分布有些多,因此在这里总结一下思路. 一.伯努利试验.伯努利过程与伯努利分布 先说一下什么是伯努利试验: 维基百科伯努利试验中: 伯努利试验(Bernoulli trial)是只有两种可能结果的单次随机试验. 即:对于一个随机变量而言,P(X=1)=p以及P(X=0)=1-p.一般用抛硬币来举例.另外,此处也描述了伯努利过程: 一个伯努利过程(Bernoulli process)是由重复出现独立但是相同分布的伯努利试验组成,例如抛硬币十次. 维基百科中,伯努利过程…