poj_3580 伸展树】的更多相关文章

自己伸展树做的第一个题 poj 3580 supermemo. 题目大意 对一个数组进行维护,包含如下几个操作: ADD x, y, d 在 A[x]--A[y] 中的每个数都增加d REVERSE x, y 将 A[x]--A[y] 中的数进行反转,变为 A[y],A[y-1]....A[x+1],A[x] REVOLVE x, y, T 将 A[x]--A[y]中的数连续右移T次 INSERT x, P 在A后添加数P DELETE x 删除A[x] MIN x, y 查询A[x]--A[y…
Splay伸展树 有篇Splay入门必看文章 —— CSDN链接 经典引文 空间效率:O(n) 时间效率:O(log n)插入.查找.删除 创造者:Daniel Sleator 和 Robert Tarjan 优点:每次查询会调整树的结构,使被查询频率高的条目更靠近树根. Tree Rotation   树的旋转是splay的基础,对于二叉查找树来说,树的旋转不破坏查找树的结构.   Splaying   Splaying是Splay Tree中的基本操作,为了让被查询的条目更接近树根,Spla…
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们讨论过,树的搜索效率与树的深度有关.二叉搜索树的深度可能为n,这种情况下,每次搜索的复杂度为n的量级.AVL树通过动态平衡树的深度,单次搜索的复杂度为log(n) (以上参考纸上谈兵 AVL树).我们下面看伸展树(splay tree),它对于m次连续搜索操作有很好的效率. 伸展树会在一次搜索后,对树进行一些特殊的操作.这些操作的理念与AVL树有些类似,即通过旋转,来改变树节…
Splay Tree 是二叉查找树的一种,它与平衡二叉树.红黑树不同的是,Splay Tree从不强制地保持自身的平衡,每当查找到某个节点n的时候,在返回节点n的同时,Splay Tree会将节点n旋转到树根的位置,这样就使得Splay Tree天生有着一种类似缓存的能力,因为每次被查找到的节点都会被搬到树根的位置,所以当80%的情况下我们需要查找的元素都是某个固定的节点,或者是一部分特定的节点时,那么在很多时候,查找的效率会是O(1)的效率!当然如果查找的节点是很均匀地分布在不同的地方时,Sp…
概要 本章介绍伸展树.它和"二叉查找树"和"AVL树"一样,都是特殊的二叉树.在了解了"二叉查找树"和"AVL树"之后,学习伸展树是一件相当容易的事情.和以往一样,本文会先对伸展树的理论知识进行简单介绍,然后给出C语言的实现.后序再分别给出C++和Java版本的实现:这3种实现方式的原理都一样,选择其中之一进行了解即可.若文章有错误或不足的地方,希望您能不吝指出! 目录1. 伸展树的介绍2. 伸展树的C实现3. 伸展树的C测试…
概要 上一章介绍了伸展树的基本概念,并通过C语言实现了伸展树.本章是伸展树的C++实现,后续再给出Java版本.还是那句老话,它们的原理都一样,择其一了解即可. 目录1. 伸展树的介绍2. 伸展树的C++实现(完整源码)3. 伸展树的C++测试程序 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3604258.html 更多内容: 数据结构与算法系列 目录 (01) 伸展树(一)之 图文解析 和 C语言的实现(02) 伸展树(二)之 C++的实现(0…
概要 前面分别通过C和C++实现了伸展树,本章给出伸展树的Java版本.基本算法和原理都与前两章一样.1. 伸展树的介绍2. 伸展树的Java实现(完整源码)3. 伸展树的Java测试程序 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3604286.html 更多内容: 数据结构与算法系列 目录 (01) 伸展树(一)之 图文解析 和 C语言的实现(02) 伸展树(二)之 C++的实现(03) 伸展树(三)之 Java的实现 伸展树的介绍 伸展树(…
对于大神来说这题是水题.我搞这题花了快2天. 伸展树的优点有什么,就是树不管你怎么旋转序列是不会改变得,并且你要使区间反转,只要把第k大的点转到根结点,那么它的左子树就是要交换的区间[l,r),然后交换左右 子树就可以了(中序),根结点的位置就是i+siz[ch[root][0]],i是处理完的结点个数,siz[ch[root][0]]就是左子树(需要旋转的个数). 旋转可以用lazy思想标记,这样时间就为logn了.由于第k大的值已经处理完成,所以直接将根结点删除. 代码: #include<…
题目链接: http://poj.org/problem?id=3580 题目大意:对一个序列进行以下六种操作.输出MIN操作的结果. 解题思路: 六个操作,完美诠释了伸展树有多么吊.注意,默认使用Lazy标记,在pushdown中维护. ADD操作:为x~y元素加一个d值.首先用split切出x~y元素.然后改变给切出的root->add,root->min,root->v.再merge进原序列. REVERSE操作:把x~y元素反转.首先用split切出x~y元素,然后改变root-…
废话不说,有篇论文可供参考:杨思雨:<伸展树的基本操作与应用> Splay的好处可以快速分裂和合并. ===============================14.07.26更新============================= 实在看不惯那充满bug的指针树了!动不动就re!动不动就re!调试调个老半天,谁有好的调试技巧为T_T 好不容易写了个模板splay出来,指针的,好写,核心代码rotate和splay能压缩到10行. #include <cstdio> us…