实现优先队列结构主要是通过堆完成,主要有:二叉堆.d堆.左式堆.斜堆.二项堆.斐波那契堆.pairing 堆等. 1. 二叉堆 1.1. 定义 完全二叉树,根最小. 存储时使用层序. 1.2. 操作 (1). insert(上滤) 插入末尾 26,不断向上比较,大于26则交换位置,小于则停止. (2). deleteMin(下滤) 提取末尾元素,放在堆顶,不断下滤: (3). 其他操作: 都是基于insert(上滤)与deleteMin(下滤)的操作. 减小元素:减小节点的值,上滤调整堆. 增大…
优先队列简单介绍: 操作系统表明上看着是支持多个应用程序同一时候执行.其实是每一个时刻仅仅能有一个进程执行,操作系统会调度不同的进程去执行. 每一个进程都仅仅能执行一个固定的时间,当超过了该时间.操作系统就会暂停当前执行的进程,去调度其他进程来执行. 实现这样的进程调度的一种方法是使用队列. 開始的时候进程被放在队列的末尾,调度程序将重复提取队列中的第一个进程来执行.直到执行完成或时间片用完,若进程没有执行完成则将该进程放入队列的末尾.这样的策略不是特别合适,由于可能一些短的进程须要等待非常长的…
树:n(n>=0)个节点的有限集.有且只有一个root,子树的个数没有限制但互不相交.结点拥有的子树个数就是该结点的度(Degree).度为0的是叶结点,除根结点和叶结点,其他的是内部结点.结点的层次(Level)从根结点开始从1计数,树中结点的最大深度称为树的深度(Depth).树中结点的子树看成从左到右有次序不能互换的,称为有序树.多棵不相交的树构成森林. 树的存储结构 1. 双亲表示法(结点中存指针指向双亲,但要找某结点的孩子要遍历整棵树,所以可以加上指针指向孩子)      2. 孩子表…
1.二叉搜索树介绍 前面我们已经介绍过了向量和链表.有序向量可以以二分查找的方式高效的查找特定元素,而缺点是插入删除的效率较低(需要整体移动内部元素):链表的优点在于插入,删除元素时效率较高,但由于不支持随机访问,特定元素的查找效率为线性复杂度O(1),效率较低. 向量和链表的优缺点是互补的,那么有没有办法兼具两者的优点呢?这便引出了接下来需要介绍的数据结构——二叉搜索树(Binary Search Tree). 二叉搜索树和链表类似,同样是以节点为单位存储数据的链式数据结构.二叉搜索树作为一种…
1.简述 二叉搜索树树(Binary Search Tree),它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值: 它的左.右子树也分别为二叉排序树. 2.代码说明 首先先创建一个辅助节点类Node,它初始化了三个属性:节点值,左孩子,有孩子. class Node { constructor(value) { this.value = value; this.left =…
题意: 给定一个序列,下面又有n个序列,判断这个序列和其他序列是否为同一个二叉树(同一序列数字各不相同) 思路: 首先讲将一个序列建立成二叉搜索树,然后将其他序列也建立二叉搜索树,两个树进行前序遍历,看他们的结果是否完全相同. 二叉搜索树概念: 左儿子小于父亲节点,父亲节点小于等于右儿子 #include<stdio.h> #include<iostream> using namespace std; struct node { int val;//当前节点的值 node *lch…
数据结构动图展示网站 树的概念 树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合.它是由n(n>=1)个有限节点组成一个具有层次关系的集合.把它叫做"树"是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的.它具有以下的特点: 每个节点有零个或多个子节点: 没有父节点的节点称为根节点: 每一个非根节点有且只有一个父节点: 除了根节点外,每个子节点可以分为多个不相交的子树: 节点的度:一个节点含有的子树的…
前置知识 二叉树的结构 public class TreeNode { int val; TreeNode left; TreeNode right; TreeNode() { } TreeNode(int val) { this.val = val; } } 中序遍历 中序遍历:对于每一个节点,遍历顺序是:左子树->当前节点->右子树 中序遍历得到的第一个节点是没有左子树的(也许是叶子节点,也许有右子树) 同理,中序遍历的最后一个节点没有右子树 代码递归实现 public void inor…
手写AVL平衡二叉搜索树 二叉搜索树的局限性 先说一下什么是二叉搜索树,二叉树每个节点只有两个节点,二叉搜索树的每个左子节点的值小于其父节点的值,每个右子节点的值大于其左子节点的值.如下图: 二叉搜索树,顾名思义,它的搜索效率很高,可以达到O(logn).但这是理想状况下的,即上图所示.实际上,由于插入顺序的原因,形成的二叉搜索树并不会像上图这样"工整",最坏的情况的下,甚至可能会退化成链表了,如下图: 这显然不是我们想要看的结果,那么我们必须要引入一套机制来避免这种事情的发生,也就是…
概要 上一章介绍了斜堆的基本概念,并通过C语言实现了斜堆.本章是斜堆的C++实现. 目录1. 斜堆的介绍2. 斜堆的基本操作3. 斜堆的C++实现(完整源码)4. 斜堆的C++测试程序 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3638524.html 更多内容:数据结构与算法系列 目录 斜堆的介绍 斜堆(Skew heap)也叫自适应堆(self-adjusting heap),它是左倾堆的一个变种.和左倾堆一样,它通常也用于实现优先队列:作为…