poj2411 Mondriaan's Dream【状压DP】】的更多相关文章

状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares…
题目:Mondriaan's Dream 链接:http://poj.org/problem?id=2411 题意:用 1*2 的瓷砖去填 n*m 的地板,问有多少种填法. 思路: 很久很久以前便做过的一道题目,状压DP,当时写得估计挺艰辛的,今天搜插头DP又搜到它,就先用状压DP写了下,顺利多了,没一会就出来了,可惜因为long long没有1A. 思路挺简单,一行一行解决,每一列用1 表示对下一行有影响,用0 表示对下一行没有影响,所以一行最多2048 种可能,然后要筛选一下,因为有些本身就…
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to d…
[题目分析] 用1*2的牌铺满n*m的格子. 刚开始用到动规想写一个n*m*2^m,写了半天才知道会有重复的情况. So Sad. 然后想到数据范围这么小,爆搜好了.于是把每一种状态对应的转移都搜了出来. 加了点优(gou)化(pi),然后poj上1244ms垫底. 大概的方法就是考虑每一层横着放的情况,剩下的必须竖起来的情况到下一层取反即可. 然后看了 <插头DP-从入门到跳楼> 这篇博客,怒抄插头DP 然后16ms了,自己慢慢YY了一下,写出了风(gou)流(pi)倜(bu)傥(tong)…
传送门 Sol 首先状压大概是很容易想到的 一般的做法大概就是枚举每种状态然后判断转移 但是这里其实可以轮廓线dp 也就是从上到下,从左到右地放方块 假设我们现在已经放到了$(i,j)$这个位置 那么影响这个位置怎么填的其实就只有这个位置上面的位置到它左边的位置这一段的状态 于是把这一段从上到下从左往右状压起来,1表示被覆盖了,0表示没被覆盖 $f[i][j][s]$表示填到第$(i,j)$,$(i-1,j)$到$(i,j-1)$的状态为s 的方案数 转移: 原则是要把现在考虑的一行的上一行填满…
求把\(N*M(1\le N,M \le 11)\) 的棋盘分割成若干个\(1\times 2\) 的长方形,有多少种方案.例如当 \(N=2,M=4\)时,共有5种方案.当\(N=2,M=3\)时,有3种方案. NM只有11,八九不离十可以状压了,反正得挨个铺,所以从上到下考虑.假如现在铺好了前\(i\) 层,基本思想就是从\(i\) 层的状态转移到\(i+1\)层的状态.但是该如何表示?观察一下铺满第 \(i\) 层的样子(必须保证第\(i\)层是满的,也就是说有的可以凸出来到\(i+1\)…
Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17203   Accepted: 9918 Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series…
题目大意:一个矩阵,只能放1*2的木块,问将这个矩阵完全覆盖的不同放法有多少种. 解析:如果是横着的就定义11,如果竖着的定义为竖着的01,这样按行dp只需要考虑两件事儿,当前行&上一行,是不是全为1,不是说明竖着有空(不可能出现竖着的00),另一个要检查当前行里有没有横放的,但为奇数的1. 原代码链接:http://blog.csdn.net/accry/article/details/6607703 首先我个人感觉,横着是11,竖着是01 这个方法很牛逼,然后就是先预处理ok数组,之后就要判…
题目大意 给定一个N*M大小的地板,要求你用1*2大小的砖块把地板铺满,问你有多少种方案? 题解 刚开始时看的是挑战程序设计竞赛上的关于铺砖块问题的讲解,研究一两天楞是没明白它代码是怎么写的,智商捉急,上面是用逐格进行转移的,据说神马插头DP...坑爹啊...然后果断放弃研究了...我们还是逐行的进行转移,这样比较好理解,方程表示为:dp[i][j]+=dp[i-1][k](能够从上一行的状态k转移到当前状态j).我们需要枚举出符合要求的状态j和k,如果第i-1行p列没有放,那么第i行的p列肯定…
题目链接:http://poj.org/problem?id=2411 题目大意 给你一个 \(n \times m (1 \le n,m \le 11)\) 的矩阵,你需要用若干 \(1 \times 2\) 的砖块铺满这个矩阵. 要求不能有砖块重叠,并且矩阵中的每个各自都需要铺满. 比如下图中描述的就是一个 \(10 \times 11\) 的矩阵的一种合法的铺法. 问满足要求的 方案数 . 比如下图中的左边5幅图片对应的是 \(2 \times 4\) 的矩阵的所有合法方案:右边的3幅图片…