作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/234 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learning)>的全套学习笔记,对应的课程视频可以在 这里 查看…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/263 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为 斯坦福CS231n <深度学习与计算机视觉(Deep Learning for Computer Vision)>的全套学习笔记,对应的课程视频可以在 这里 查看.更多资料获取方式见文末…
只要你懂 Python,大概记得高中学过的求导知识,看完这个视频你还不理解反向传播和神经网络核心要点的话,那我就吃鞋:D Andrej Karpathy,前特斯拉 AI 高级总监.曾设计并担任斯坦福深度学习课程 CS231n 讲师.OpenAI 创始成员和研究科学家.在 7 月离职特斯拉后,Andrej 在家录制了一个详解反向传播的课程,自信表示"这是 8 年来领域内对神经网络和反向传播的最佳讲解",并在推特打赌"看不懂就吃鞋". 虽然很想看 Andrej 直播吃鞋…
反向传播算法详细推导 反向传播(英语:Backpropagation,缩写为BP)是"误差反向传播"的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法.该方法对网络中所有权重计算损失函数的梯度.这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数. 在神经网络上执行梯度下降法的主要算法.该算法会先按前向传播方式计算(并缓存)每个节点的输出值,然后再按反向传播遍历图的方式计算损失函数值相对于每个参数的偏导数. 我们将以全连接层,激活函数采用 Sigm…
关于 RNN 循环神经网络的反向传播求导 本文是对 RNN 循环神经网络中的每一个神经元进行反向传播求导的数学推导过程,下面还使用 PyTorch 对导数公式进行编程求证. RNN 神经网络架构 一个普通的 RNN 神经网络如下图所示: 其中 \(x^{\langle t \rangle}\) 表示某一个输入数据在 \(t\) 时刻的输入:\(a^{\langle t \rangle}\) 表示神经网络在 \(t\) 时刻时的hidden state,也就是要传送到 \(t+1\) 时刻的值:\…
使用PyTorch构建神经网络以及反向传播计算 前一段时间南京出现了疫情,大概原因是因为境外飞机清洁处理不恰当,导致清理人员感染.话说国外一天不消停,国内就得一直严防死守.沈阳出现了一例感染人员,我在22号乘坐飞机从沈阳乘坐飞机到杭州,恰好我是一位密切接触人员的后三排,就这样我成为了次密切接触人员,人下飞机刚到杭州就被疾控中心带走了,享受了全免费的隔离套餐,不得不说疾控中心大数据把控是真的有力度.在这一段时间,也让我沉下心来去做了点事,之前一直鸽的公众号也开始写上了...不过隔离期间确实让我这么…
前置知识   求导 知识地图   神经网络算法是通过前向传播求代价,反向传播求梯度.在上一篇中介绍了神经网络的组织结构,逻辑关系和代价函数.本篇将介绍如何求代价函数的偏导数(梯度). 梯度检测   在进入主题之前,先了解一种判断代价函数的求导结果是否正确的方法,这种方法称为梯度检测.现在假设我们已经掌握了反向传播,可以计算出代价函数的偏导数.   当函数只有一个变量时,已知导数是切线的斜率,如果能求出某个点的斜率,也就求出了该点的导数.当ε足够小时(如10的-4次方),θ处的斜率可以近似表示为如…
反向传播和梯度下降这两个词,第一眼看上去似懂非懂,不明觉厉.这两个概念是整个神经网络中的重要组成部分,是和误差函数/损失函数的概念分不开的. 神经网络训练的最基本的思想就是:先“蒙”一个结果,我们叫预测结果a,看看这个预测结果和事先标记好的训练集中的真实结果y之间的差距,然后调整策略,再试一次,这一次就不是“蒙”了,而是有依据地向正确的方向靠近.如此反复多次,一直到预测结果和真实结果之间相差无几,亦即|a-y|->0,就结束训练. 在神经网络训练中,我们把“蒙”叫做初始化,可以随机,也可以根据以…
往期回顾 在上一篇文章中,我们已经掌握了机器学习的基本套路,对模型.目标函数.优化算法这些概念有了一定程度的理解,而且已经会训练单个的感知器或者线性单元了.在这篇文章中,我们将把这些单独的单元按照一定的规则相互连接在一起形成神经网络,从而奇迹般的获得了强大的学习能力.我们还将介绍这种网络的训练算法:反向传播算法.最后,我们依然用代码实现一个神经网络.如果您能坚持到本文的结尾,将会看到我们用自己实现的神经网络去识别手写数字.现在请做好准备,您即将双手触及到深度学习的大门. 神经元 神经元和感知器本…
注意:版权所有,转载需注明出处. 神经网络,从大学时候就知道,后面上课的时候老师也讲过,但是感觉从来没有真正掌握,总是似是而非,比较模糊,好像懂,其实并不懂. 在开始推导之前,需要先做一些准备工作,推导中所使用的神经网络如上图所示.一个神经网络由多个层(layer)构成,每一层有若干个节点(node),最左边是输入层,中间的层被称为隐含层,最右边是输出层:上一层节点与下一层节点之间,都有边相连,代表上一层某个节点为下一层某个节点贡献的权值. 接下来对推导中使用的符号做一个详细的说明,使推导的过程…