首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
5.DataFrame(基本概念)
】的更多相关文章
数据分析入门——pandas之DataFrame基本概念
一.介绍 数据帧(DataFrame)是二维数据结构,即数据以行和列的表格方式排列. 可以看作是Series的二维拓展,但是df有行列索引:index.column 推荐参考:https://www.jianshu.com/p/c534e83d2f4b 二.快速入门 1.打开csv 发现报错,原因是路径中\User的\u和转义符号冲突了,我们使用字符串中的知识,添加r开头表示不转义即可: 它包含的是行列索引和值values,value对应的就是二维的ndarray了 2.创建df 1.通过字典来…
5.DataFrame(基本概念)
…
Pandas 基础(2) - Dataframe 基础
上一节我们已经对 Dataframe 的概念做了一个简单的介绍, 这一节将具体看下它的一些基本用法: 首先, 准备一个 excel 文件, 大致内容如下, 并保存成 .csv 格式. 然后, 在 jupyter notebook 里执行如下代码: #引入 pandas 模型 import pandas as pd # 读取 csv 文件 df = pd.read_csv('weather_data.csv') # 打印 df 在 jupyter notebook 里的表现形式大概如下:就这么简单…
spark streaming (一)
实时计算介绍 Spark Streaming, 其实就是一种Spark提供的, 对于大数据, 进行实时计算的一种框架. 它的底层, 其实, 也是基于我们之前讲解的Spark Core的. 基本的计算模型, 还是基于内存的大数据实时计算模型. 而且, 它的底层的组件或者叫做概念, 其实还是最核心的RDD. 针对实时计算的特点, 在RDD之上, 进行了一层封装, 叫做DStream. 其实, 学过了Spark SQL之后, 你理解这种封装就容易了. 之前学习Spark SQL是不是也是发现,…
PySpark 大数据处理
本文主要介绍Spark的一些基本算子,PySpark及Spark SQL 的使用方法. 虽然我从2014年就开始接触Spark,但几年来一直没有真正地学以致用,时间一久便忘了如何使用,直到在工作中用到才再次捡起来.遂再整理一番,留作备忘. Apache Spark - Unified Engine for large-scale data analytics 支持的语言有:Python, SQL, Scala, Java, R. 因为Spark采用Scala开发,因此Scala接口是原生的.全面…
DataFrame概念与创建
一 概念 Pandas是一个开源的Python数据分析库.Pandas把结构化数据分为了三类: Series,1维序列,可视作为没有column名的.只有一个column的DataFrame: DataFrame,同Spark SQL中的DataFrame一样,其概念来自于R语言,为多column并schema化的2维结构化数据,可视作为Series的容器(container): Panel,为3维的结构化数据,可视作为DataFrame的容器: 二 创建DataFrame # 标准创建 df2…
Pandas Series和DataFrame的基本概念
1,创建Series 1.1,通过iterable创建Series Series接收参数是Iterable,不能是Iterator pd.Series(Iterable) 可以多加一个index参数,index可以接收Iterator或者Iterable: >>> pd.Series(('a', 'b'), index=iter(range(2))) 0 a 1 b dtype: object 1.2,通过字典创建Series key是索引: >>> pd.Series…
Pandas 数据结构Dataframe:基本概念及创建
"二维数组"Dataframe:是一个表格型的数据结构,包含一组有序的列,其列的值类型可以是数值.字符串.布尔值等. Dataframe中的数据以一个或多个二维块存放,不是列表.字典或一维数组结构. 1. Dataframe的数据结构 # Dataframe 数据结构 # Dataframe是一个表格型的数据结构,“带有标签的二维数组”. # Dataframe带有index(行标签)和columns(列标签) data = {'name':['Jack','Tom','Mary'],…
RDD、DataFrame和DataSet的区别
原文链接:http://www.jianshu.com/p/c0181667daa0 RDD.DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同. RDD和DataFrame RDD-DataFrame 上图直观地体现了DataFrame和RDD的区别.左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解Person类的内部结构.而右侧的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数…
Spark-RDD/DataFrame/DateSet
RDD 优点: 编译时类型安全编译时就能检查出类型错误 面向对象的编程风格直接通过类名点的方式来操作数据 缺点: 序列化和反序列化的性能开销无论是集群间的通信, 还是IO操作都需要对对象的结构和数据进行序列化和反序列化. GC的性能开销频繁的创建和销毁对象, 势必会增加GC import org.apache.spark.sql.SQLContext import org.apache.spark.{SparkConf, SparkContext} object Run { def main(a…