BZOJ3456 城市规划 【分治NTT】】的更多相关文章

题目链接 BZOJ3456 题解 据说这题是多项式求逆 我太弱不会QAQ,只能\(O(nlog^2n)\)分治\(NTT\) 设\(f[i]\)表示\(i\)个节点的简单无向连通图的数量 考虑转移,直接求不好求,我们知道\(n\)个点无向图的数量是\(2^{{n \choose 2}}\)的,考虑用总数减去不连通的 既然图不连通,那么和\(1\)号点联通的点数一定小于\(n\),我们枚举和\(1\)号点所在联通块大小,就可以得到式子: \[f[n] = 2^{{n \choose 2}} - \…
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=3456 Solution 这个问题可以考虑dp,利用补集思想 N个点的简单图总数量为$2^{\binom{N}{2}}$,要求的是简单联通图,所以可以用总量减不连通的. 不连通的可以通过枚举与某个固定点的联通的点的数量得到$tot=\sum _{i=1} ^{N} \binom{N-1}{i-1}*dp[i]*2^{\binom{N-i}{2}}$ 其中$dp[i]$表示的就是$i$个点的…
题目链接 BZOJ3456 题解 真是一道经典好题,至此已经写了分治\(NTT\),多项式求逆,多项式求\(ln\)三种写法 我们发现我们要求的是大小为\(n\)无向联通图的数量 而\(n\)个点的无向图是由若干个无向联通图构成的 那么我们设\(F(x)\)为无向联通图数量的指数型生成函数 设\(G(x)\)为无向图数量的指数型生成函数 \(G(x)\)很好求 而 \[G(x) = \frac{F(x)}{1!} + \frac{F^2(x)}{2!} + \frac{F^3(x)}{3!} +…
设f[i]为连通图的数量,g[i]为不连通图的数量,显然有f[i]=2i*(i-1)/2-g[i],g[i]通过枚举1所在连通块大小转移,有g[i]=Σf[j]*C(i-1,j-1)·2(i-j)*(i-j-1)/2,也即f[i]=2i*(i-1)/2-(i-1)!·Σf[j]·2(i-j)*(i-j-1)/2/(j-1)!/(i-j)!.显然是一个卷积形式,可以分治NTT. 进一步将式子化的更优美一点.设h[i]=2i*(i-1)/2,有f[i]=h[i]-(i-1)!·Σf[j]·h[i-j…
题目链接 BZOJ3456 题解 之前我们用分治\(ntt\)在\(O(nlog^2n)\)的复杂度下做了这题,今天我们使用多项式求逆 设\(f_n\)表示\(n\)个点带标号无向连通图数 设\(g_n\)表示\(n\)个点图的数量,显然\(g_n = 2^{{n \choose 2}}\) 枚举\(1\)号点所在联通块大小,我们有 \[g_n = \sum\limits_{i = 1}^{n} {n - 1 \choose i - 1}f_{i}g_{n - i}\] 代入\(g_n\) \[…
Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通. 为了省钱, 每两个城市之间最多只能有一条直接的贸易路径. 对于两个建立路线的方案, 如果存在一个城市对, 在两个方案中是否建立路线不一样, 那么这两个方案就是不同的, 否则就是相同的. 现在你需要求出一共有多少不同的方案. 好了, 这就是困扰阿狸的问题. 换句话说, 你需要求出n个点的…
题面 戳这里,题意简单易懂. 题解 首先我们发现,操作是可以不考虑顺序的,因为每次操作会加一个 \(1\) ,每次进位会减少一个 \(1\) ,我们就可以考虑最后 \(1\) 的个数(也就是最后的和),以及成功操作次数,就行了. 然后根据期望的线性性,我们可以从低到高按位考虑贡献. 考虑一个递推:\(f(i, j)\) 表示从后往前第 \(i\) 位总共被改变 \(j\) 次的概率,那么有两种转移: 进位:\(\displaystyle f(i - 1, j) \to f(i, \lfloor…
考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespa…
题目链接 CF960G 题解 同FJOI2016只不过数据范围变大了 考虑如何预处理第一类斯特林数 性质 \[x^{\overline{n}} = \sum\limits_{i = 0}^{n}\begin{bmatrix} n \\ i \end{bmatrix}x^{i}\] 分治\(NTT\)即可在\(O(nlog^2n)\)的时间内预处理出同一个\(n\)的所有\(\begin{bmatrix} n \\ i \end{bmatrix}\) 其实还有比较优美的倍增\(fft\)的\(O(…
题目链接 洛谷T30212 题解 式子很容易推出来,二项式定理展开后对于\(k\)的答案即可化简为如下: \[k!(\sum\limits_{i = 0}^{k} \frac{\sum\limits_{x = 1}^{n} a_x^{i}}{i!} \centerdot \frac{\sum\limits_{x = 1}^{n} b_x^{k - i}}{(k - i)!})\] 是一个卷积的形式 我们只需对所有\(k\)预处理出\(\sum\limits_{i = 1}^{n} a_i^{k}…
题目链接 loj2541 题解 思路很妙啊, 人傻想不到啊 觉得十分难求,考虑容斥 由于\(1\)号可能不是最后一个被杀的,我们容斥一下\(1\)号之后至少有几个没被杀 我们令\(A = \sum\limits_{i = 1}^{n} w_i\),令\(S\)表示选出那几个在\(i\)之后的\(w_i\)和 我们淘汰人之后概率的分母就改变了,很不好求 我们考虑转化一下问题,每个人被杀后依旧存在,只不过再次选中他时再选一次,是等价的 那么此时那几个人在\(1\)之后的概率 \[ \begin{al…
题目链接 hdu5279 题解 给出若干个完全图,然后完全图之间首尾相连并成环,要求删边使得两点之间路径数不超过\(1\),求方案数 容易想到各个完全图是独立的,每个完全图要删成一个森林,其实就是询问\(n\)个点有标号森林的个数 设\(f[i]\)表示\(i\)个点有标号森林的个数 枚举第一个点所在树大小,我们只需求出\(n\)个点有多少种树,由\(purfer\)序容易知道是\(n^{n - 2}\) 那么有 \[f[n] = \sum\limits_{i = 1}^{n} {n - 1 \…
$ \color{#0066ff}{ 题目描述 }$ 给你三个正整数 \(n\),\(a\),\(b\),定义 \(A\) 为一个排列中是前缀最大值的数的个数,定义 \(B\) 为一个排列中是后缀最大值的数的个数,求长度为 \(n\) 的排列中满足 \(A = a\) 且 \(B = b\) 的排列个数.\(n \le 10^5\),答案对 \(998244353\) 取模. \(\color{#0066ff}{输入格式}\) 三个整数n,a,b \(\color{#0066ff}{输出格式}\…
题目链接 ZOJ3874 题意简述: 在一个序列中,两点间如果有边,当且仅当两点为逆序对 给定一个序列的联通情况,求方案数对\(786433\)取模 题解 自己弄了一个晚上终于弄出来了 首先\(yy\)一下发现一个很重要的性质: 联通块内的点编号必须是连续的 证明: 假设一个联通块编号不连续,设\(a\),\(b\)分别为联通块左侧和联通块右侧中的一个点,\(x\)为\(a\),\(b\)之间不在该联通块内的点 那么显然有\(a > b\),\(a < x\),\(x < b\) 即\(…
题意  给定n个点,任意两点之间可以不连边也可以连边.如果连边的话可以染上m种颜色. 求最后形成的图,是一个带环连通图的方案数. 首先答案是n个点的图减去n个点能形成的树. n个点能形成的树的方案数比较好求,根据prufer序列可以知道n个点形成的无根树的个数为$n^{n-2}$ 那么现在问题变成求n个点形成的连通图的个数. 图有连通和不连通的,那么就是图的总数减去不连通的图的总数. 图的总数很简单,$m^{\frac{n(n-1)}{2}}$,那么现在要求不连通的图的总数. 设$f(n)$为$…
题目链接  2017 CCPC Hangzhou Problem G 题意描述很清晰. 考虑每个家庭有且仅有$k$对近亲的方案数: $C(a, k) * C(b, k) * k!$ 那么如果在第$1$个家庭里面选出$k_{1}$对近亲,在第$2$个家庭里面选出$k_{2}$对近亲......在第$n$个家庭里面选出$k_{n}$对近亲, 剩下那些人自由组合的话,那么最后这种方案至少会有$∑k$对近亲. 说是至少,因为同一个家庭里面没被强行选择的男女还是可能被组到了一起. 那么考虑如何求至少有$k…
不想多说了,看网上的题解吧,我大概说下思路. 首先考察Stirling的意义,然后求出递推式,变成卷积的形式. 然后发现贡献是一定的,我们可以分治+NTT. 也可以直接求逆(我不会啊啊啊啊啊) #include <map> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <alg…
题目传送门 题目大意:有$n$个小岛,每个小岛上有$a_{i}$个城市,同一个小岛上的城市互相连接形成一个完全图,第$i$个小岛的第$a_{i}$个城市和第$i+1$个小岛的第$1$个城市连接,特别地,第$n$个小岛的第$a_{n}$个城市和第$1$个小岛的第$1$个城市连接.现在要断掉图中的一些边,保证任意两个城市只有一条路径或者不连通,求合法的断边方案总数,$n,a_{i}<=1e5$ 完全不会(喷血 我们对每个小岛单独讨论 如果任意两个城市只有一条路径或者不连通,那么这张图只能是一个森林…
题面传送门 题目大意: 假设现在有一个排列,每个数和在它右面第一个比它大的数连一条无向边,会形成很多联通块. 定义一个联通块的权值为:联通块内元素数量的平方. 定义一个排列的权值为:每个联通块的权值之积 求长度为$n$所有排列的权值之和,$n\leq 1e5$,$1e4$组询问 原题面描述不清楚啊..害得我白想了30min 和ZOJ3874一样都是排列$DP$问题 $DP$方程还是不难想的 假设现在有一个$i-1$的排列,当我们把$i$某个位置上时 $i$前面的数都会和$i$连通,$i$后面的数…
题面:vjudge传送门 ZOJ传送门 题目大意:给你一个排列,如果两个数构成了逆序对,就在他们之间连一条无向边,这样很多数会构成一个联通块.现在给出联通块内点的编号,求所有可能的排列数 推来推去容易发现性质,同一联通块内的点一定是连续标号的,否则无解 然后我就不会了 好神的$NTT$优化$DP$啊 根据上面的性质,联通块之间是互不影响的,所以我们对每个联通块分别统计答案再相乘 定义$f[i]$表示$i$个点构成的合法联通块,可能的排列数 一个合法联通块的所有元素一定在同一联通块内,说明不可能存…
题目来源:noi2019模拟测试赛(一) 题意: 题解: 这场三道神仙概率期望题……orzzzy 这题暴力$O(n^2)$有30分,但貌似比正解更难想……(其实正解挺好想的) 注意到一次操作实际上就是在一段区间里乘上了一个形如$px+(1-p)$的多项式,设把所有多项式合并得到一个多项式$F(x)$,那么我们要求的答案实际上就是: $$[x^k]F(x)$$ 那么可以先离散化坐标,然后开一棵线段树,用vector维护每个点(即最小不可再分的区间)上要乘的多项式,最后dfs一遍线段树,用分治NTT…
点此看题面 大致题意: 有\(n\)个人相互开枪,每个人有一个仇恨度\(a_i\),每个人死后会开枪再打死另一个还活着的人,且第一枪由你打响.设当前剩余人仇恨度总和为\(k\),则每个人被打中的概率为\(\frac {a_i}k\).求第\(1\)个人最后被打死的概率. 一个重要性质 对于这题,首先我们可以发现,由于一个人死后,其他人被打中概率的分母会受到影响,产生了后效性,似乎很不可维护. 因此我们需要知道一个重要性质:设\(tot=\sum_{i=1}^na_i\),则题意可以转化为,每个人…
传送门 思路 好一个神仙题qwq 首先,发现由于一个人死之后分母会变,非常麻烦,考虑用某种方法定住分母. 我们稍微改一改游戏规则:一个人被打死时只打个标记,并不移走,也就是说可以被打多次但只算一次.容易发现这并不影响最终结果. 然而光想到这个好像没什么用? 再考虑容斥:枚举哪些人在1之后被打死,其他随意.设在1后面的人的权值为\(S\),总权值为\(sum\),那么概率就是 \[ \begin{align*} &\sum_{i=0}^{\infty} (1-\frac{w_1+S}{sum})^…
传送门: http://codeforces.com/problemset/problem/848/E 题解: 假设0-n一定有一条边,我们得到了一个方案,那么显然是可以旋转得到其他方案的. 记最大的i满足i到i+n有一条边,那么旋转的方案数是n-i 考虑动态规划: 设\(g[i]\)表示i个点,只用相邻或隔一个去拼接的方案数. 转移显然有\(g[i]=g[i-2]+g[i-4]\). 设\(f[i][0/1][0/1]\)表示1有连对面的,n+1有连对面的,2-n填,前面后面是否要伸出去的方案…
正题 题目大意 一张随机的\(n\)个点的竞赛图,给出它的\(m\)条相互无交简单路径,求这张竞赛图的期望强联通分量个数. \(1\leq n,m\leq 10^5\) 解题思路 先考虑\(m=0\)的做法,此时我们考虑一个强联通块的贡献,注意到竞赛图中强联通块的会构成一条链的形式,枚举一个大小\(S\),那么此时联通块内到联通块外的边方向确定,那么这个联通块产生贡献的的概率就是\(\frac{1}{2}^{S(n-S)}\),选出这个联通块的方案就是\(\binom{n}{i}\). 那么答案…
正题 题目链接:https://loj.ac/p/6503 题目大意 \(n\)张卡\(m\)种,第\(i\)种卡有\(a_i\)张,求所有排列中有\(k\)对相邻且相同的卡牌. \(1\leq n\leq 10^5,0\leq k\leq 10^5,1\leq m\leq 20000,\sum_{i=1}^ma_i=n\) 解题思路 \(k\)对相邻的相同,就是可以分成有\(n-k\)组相同的. 考虑这个问题,把每组牌分成若干组插到不同位置,先不考虑这样可能插到相邻位置的情况我们后面可以再用容…
正题 题目链接:https://www.luogu.com.cn/problem/CF960G 题目大意 求有多少个长度为\(n\)的排列,使得有\(A\)个前缀最大值和\(B\)个后缀最大值. \(0\leq n,A,B\leq 10^5\) 解题思路 显然的是把最大的数两边然后左边的是前缀最大值,右边的是前缀最小值. 然后考虑两个前缀最大值之间其实可以插任何数字,但是最大的一定要排在前面. 其实就是这些数字分成若干个圆排列的个数,就是第一类斯特林数. 枚举左右两边的数量就有 \[\sum_{…
正题 题目链接:https://www.luogu.com.cn/problem/CF848E 题目大意 \(2n\)个花排成一个圆环,\(n\)种颜色每种两个,要求两个相同颜色之间最小距离为\(1,2\)或\(n\). 对于一种染色方案的权值为:删除掉距离为\(n\)的颜色后,剩下的连续段长度的乘积. 求所有方案的染色之和对\(998244353\)取模. \(1\leq n\leq 50000\) 解题思路 环好像很麻烦,先考虑线段上的,现在有两个长度为\(n\)的数列,然后距离为\(n\)…
Codeforces 题面传送门 & 洛谷题面传送门 u1s1 感觉这道题放到 D1+D2 里作为 5250 分的 I 有点偏简单了吧 首先一件非常显然的事情是,如果我们已知了排列对应的阶梯序列,那么排列中每个极长的连续阶梯段就已经确定了,具体来说,由于显然极大的连续段之间不能相交,因此假设 \(a\) 为 \(p\) 的阶梯序列,对于 \(a\) 数组中每个值相同的极大连续段 \([l,r]\),显然我们只能每 \(a_l\) 个元素将其划分成 \([l,l+a_l-1],[l+a_l,l+2…
题面传送门 很久之前(2020 年)就听说过这题了,这么经典的题怎么能只听说而亲自做一遍呢 首先注意到每次开枪打死一个猎人之后,打死其他猎人概率的分母就会发生变化,这将使我们维护起来非常棘手,因此我们考虑做一个转化:每次随便从全集中选出一个猎人(不管死的活的),如果它是活的就将它射死.假设现在死了的猎人的 \(w_i\) 值之和为 \(T\),所有猎人的 \(w_i\) 值之和为 \(U\),那么精通无穷级数的同学应该不难推出,对于某个还活着的猎人 \(j\),射到的第一个活着的猎人是 \(j\…