题意 题目链接 给定一个长度为\(n\)的序列.你需要将它分为\(m\)段,每一段的代价为这一段内相同的数的对数,最小化代价总和. \(n<=10^5,m<=20\) Sol 看完题解之后的感受: 首先列出裸的dp方程,\(f[i][j]\)表示前\(i\)个位置,切了\(j\)次,转移的时候枚举上一次且在了哪儿 \(f[i][j] = max(f[k][j - 1] + w(k, i))\) \(w(k, i)\)表示\([k, i]\)内相同的数的对数.. 然后sb的我以为拿个单调队列维护…
Yet Another Minimization Problem dp方程我们很容易能得出, f[ i ] = min(g[ j ] + w( j + 1, i )). 然后感觉就根本不能优化. 然后就滚去学决策单调啦. 然后就是个裸题, 分治一下就好啦, 注意用分治找决策点需要的条件是我们找出被决策点不能作为当前转移的决策点使用. 如果w( j + 1, i )能很方便求出就能用单调栈维护, 并且找出的被决策点能当作当前转移的决策点使用. 我怎么感觉用bfs应该跑莫队的时候应该比dfs快啊,…
题意 给定一个序列 \(\{a_1, a_2, \cdots, a_n\}\),要把它分成恰好 \(k\) 个连续子序列. 每个连续子序列的费用是其中相同元素的对数,求所有划分中的费用之和的最小值. \(2 \le n \le 10^5, 2 \le k \le \min(n, 20), 1 \le a_i \le n\) 题解 \(k\) 比较小,可以先考虑一个暴力 \(dp\) . 令 \(dp_{k, i}\) 为前 \(i\) 个数划分成 \(k\) 段所需要的最小花费. 那么转移如下…
目录 题目链接 题解 代码 题目链接 CF868F. Yet Another Minimization Problem 题解 \(f_{i,j}=\min\limits_{k=1}^{i}\{f_{k,j-1}+w_{k,i}\}\) \(w_{l,r}\)为区间\([l,r]\)的花费,1D1D的经典形式 发现这个这是个具有决策单调性的转移 单无法快速转移,我们考虑分治 对于当前分治区间\([l,r]\) ,它的最优决策区间在\([L,R]\)之间. 对于\([l,r]\)的中点\(mid\)…
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$表示当前这段序列中数字大小为i的数的个数. 题解: 先考虑暴力DP, f[i][j]表示DP到i位,分为j段的最小代价. 则$f[i][j] = min(f[l - 1][j] + sum[l][i])$,其中sum[l][i]表示区间[l, i]分成一段的代价. 然后可以发现,这是具有决策单调性的…
洛谷题目传送门 貌似做所有的DP题都要先搞出暴力式子,再往正解上靠... 设\(f_{i,j}\)为前\(i\)个数分\(j\)段的最小花费,\(w_{l,r}\)为\([l,r]\)全在一段的费用. \[f_{i,j}=\min\limits_{k=1}^{i}\{f_{k,j-1}+w_{k,i}\}\] 显然\(j\)这一维可以滚掉,于是变成\(g_i=\min\limits_{k=1}^{i}\{f_k+w_{k,i}\}\)做\(m\)遍(题目中的\(k\)) 这又是一个决策单调性优化…
题目描述:给定一个序列,要把它分成k个子序列.每个子序列的费用是其中相同元素的对数.求所有子序列的费用之和的最小值. 输入格式:第一行输入n(序列长度)和k(需分子序列段数).下一行有n个数,序列的每一个元素. 输出格式:输出一个数,费用和的最小值. 2<=n<=10^5,2<=k<=min(n,20),序列的每一个元素值大于等于1,小于等于n. 决策单调性到底是个什么神仙…… 这题用分治做决策单调性…… 问题是我连题解都看不懂…… 米娜桑自己看题解吧,如果有会了的麻烦教我一下………
题目描述: 给定一个序列,要把它分成k个子序列.每个子序列的费用是其中相同元素的对数.求所有子序列的费用之和的最小值. 输入格式:第一行输入n(序列长度)和k(需分子序列段数).下一行有n个数,序列的每一个元素. 输出格式:输出一个数,费用和的最小值. 2<=n<=10^5,2<=k<=min(n,20),序列的每一个元素值大于等于1,小于等于n. Solution 思路还是比较单纯 \[ f_{i,j}=f_{i-1,k}+g_{k+1,j} \] 有m次每次是\(O(n)\)的…
前缀和优化 当DP过程中需要反复从一个求和式转移的话,可以先把它预处理一下.运算一般都要满足可减性. 比较naive就不展开了. 题目 [Todo]洛谷P2513 [HAOI2009]逆序对数列 [Done]洛谷P2511 [HAOI2008]木棍分割 [Done]洛谷P4099 [HEOI2013]SAO [Done]NOIAC37 染色 单调队列优化 前置技能:单调队列(经典的问题模型:洛谷P1886 滑动窗口) 用于优化形如\(f_i=\min/\max_{j=l_i}^{i-1}\{g_…
其实是一个还算 trivial 的知识点吧--早在 2019 年我就接触过了,然鹅当时由于没认真学并没有把自己学懂,故今复学之( 1. 决策单调性 引入:在求解 DP 问题的过程中我们常常遇到这样的问题:我们列出了一个 \(dp\) 状态转移方程式形如 \(dp_i=\min\limits_{j<i}dp_j+w(j+1,i)\) 或类似的形式,暴力转移时间复杂度 \(\mathcal O(n^2)\) 过不去,但是你发现这里的代价函数 \(w(l,r)\) 有一些比较好的性质,譬如单调性或凹凸…