如上图所示,计算区间[a  b]上f(x)的积分即求曲线与X轴围成红色区域的面积.下面使用蒙特卡洛法计算区间[2  3]上的定积分:∫(x2+4*x*sin(x))dx # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt def f(x): return x**2 + 4*x*np.sin(x) def intf(x): return x**3/3.0+4.0*np.sin(x) - 4.0*x*n…
目录 概 主要内容 "代码" Katharopoulos A, Fleuret F. Not All Samples Are Created Equal: Deep Learning with Importance Sampling[J]. arXiv: Learning, 2018. @article{katharopoulos2018not, title={Not All Samples Are Created Equal: Deep Learning with Importanc…
  Just the indirect specular pass by importance sampling. With all layers. Manually traced by 3D Hammersley sequence with 8 samples. Link to the paper. Actually this should be done in a pure Path Tracer with 3 random number from multiple dimension rn…
吻合度蛮高,但不光滑. > L= > K=/ > x=runif(L) > *x*(-x)^/K)) > hist(x[ind],probability=T, + xlab="x",ylab="Density",main="") /* 应用了平滑数据的核函数 */ > d=density(x[,to=) // 只对标记为true的x做统计 --> 核密度估计 > lines(d,col=) // (…
用蒙特卡洛求解积分时 (Monte Carlo 随机采样对目标积分函数做近似) importance sampling func p(x) p(x)值大的地方,Monte Carlo多采几次 值小的地方,少采样一些. 一起贡献MC的积分值 http://blog.sina.com.cn/s/blog_4e5740460100cw5b.html link1 http://statweb.stanford.edu/~owen/mc/ 对 GGX的importance的理解 ImportanceSam…
分类: 我叫学术帖2011-03-25 13:22 3232人阅读 评论(4) 收藏 举报 图形 重要性采样是非常有意 思的一个方法.我们首先需要明确,这个方法是基于采样的,也就是基于所谓的蒙特卡洛法(Monte Carlo).蒙特卡洛法,本身是一个利用随机采样对一个目标函数做近似.例如求一个稀奇古怪的形状的面积,如果我们没有一个解析的表达方法,那么怎么做 呢?蒙特卡洛法告诉我们,你只要均匀的在一个包裹了这个形状的范围内随机撒点,并统计点在图形内的个数,那么当你撒的点很多的时候,面积可以近似为=…
一重定积分 1. Z = trapz(X,Y,dim) 梯形数值积分,通过已知参数x,y按dim维使用梯形公式进行积分 %举例说明1 clc clear all % int(sin(x),0,pi) x=0:pi/100:pi; %积分区间 y=sin(x); %被积函数 z = trapz(x,y) %计算方式一 z = pi/100*trapz(y) %计算方式二  运行结果 被积函数曲线 2.[q,fcnt]= quad(fun,a,b,tol,trace,p1,p2...) 自适应sim…
封装成了一个类,头文件和源文件如下: integral.h #pragma once //Microsoft Visual Studio 2015 Enterprise #include <iostream> #include <cmath> #include <ctime> using std::cout; using std::endl; class integral { private: struct info { //value表示积分值,error表示误差 d…
转自:http://blog.csdn.net/xianlingmao/article/details/7768833 引入 我们会遇到很多问题无法用分析的方法来求得精确解,例如由于式子特别,真的解不出来.这时就需要找一种方法求其近似解,并且有手段能测量出这种解的近似程度 (比如渐进性,上下限什么的) 随机模拟的基本思想 现在假设我们有一个矩形的区域R(大小已知),在这个区域中有一个不规则的区域M(即不能通过公式直接计算出来),现在要求取M的面积? 怎么求?近似的方法很多,例如:把这个不规则的区…
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hybrid Monte Carlo. 上一章讲到的平均场是统计物理学中常用的一种思想,将无法处理的复杂多体问题分解成可以处理的单体问题来近似,变分推断便是在平均场的假设约束下求泛函L(Q)极值的最优化…
本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到PRML的笔记中去:) 背景 随机模拟也可以叫做蒙特卡罗模拟(Monte Carlo Simulation).这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯.诺依曼.费米.费曼.Nicholas Metropolis, 在美国洛斯阿拉莫斯国家实验室…
转载请注明出处:Bin的专栏,http://blog.csdn.net/xbinworld 本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到PRML的笔记中去:) 背景 随机模拟也可以叫做蒙特卡罗模拟(Monte Carlo Simulation).这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯…
CSharpGL(54)用基于图像的光照(IBL)来计算PBR的Specular部分 接下来本系列将通过翻译(https://learnopengl.com)这个网站上关于PBR的内容来学习PBR(Physically Based Rendering). 本文对应(https://learnopengl.com/PBR/IBL/Specular-IBL). +BIT祝威+悄悄在此留下版了个权的信息说: 原文虽然写得挺好,但是仍旧不够人性化.过一阵我自己总结总结PBR,写一篇更容易理解的. 正文…
本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到PRML的笔记中去:) 背景 随机模拟也可以叫做蒙特卡罗模拟(Monte Carlo Simulation).这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯.诺依曼.费米.费曼.Nicholas Metropolis, 在美国洛斯阿拉莫斯国家实验室…
runifum Inversion Sampling 看样子就是个路人甲. Ref: [Bayes] Hist & line: Reject Sampling and Importance Sampling > func=function(n) { + *runif(n))) + } // 反函数的x的均匀sampling值 => y 就是原函数的x,刚好作为hist的输入参数 > hist(),probability=T, xlab=expression(theta), yla…
Ref: http://blog.csdn.net/xianlingmao/article/details/7768833 通常,我们会遇到很多问题无法用分析的方法来求得精确解,例如由于式子特别,真的解不出来: 一般遇到这种情况,人们经常会采用一些方法去得到近似解,已经近似程度. 本文要谈的随机模拟就是这么一类近似求解的方法. 它的诞生虽然最早可以追溯到18xx年法国数学家蒲松的投针问题(用模拟的方法来求解\pi的问题),但是真正的大规模应用还是被用来解决二战时候美国生产原子弹所碰到的各种难以解…
1.基本采样算法(Basic Sampling Algorithms) 1.1.标准概率分布(Standard distributions) 1.2.拒绝采样(Rejection sampling) 1.3.可调节的拒绝采样(Adaptive rejection sampling) 1.4.重要采样(Importance sampling) 1.5.采样-重要性-重采样(Sampling-importance-resampling) 1.6.采样与EM算法(Sampling and EM alg…
[softmax分类器的加速器] https://www.tensorflow.org/api_docs/python/tf/nn/sampled_softmax_loss This is a faster way to train a softmax classifier over a huge number of classes. [分类的结果集过大,选取子集] https://www.tensorflow.org/api_guides/python/nn#Candidate_Samplin…
蒙特卡洛马尔科夫链(MCMC) 标签: 机器学习重要性采样MCMC蒙特卡洛 2016-12-30 20:34 3299人阅读 评论(0) 收藏 举报  分类: 数据挖掘与机器学习(41)  版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   在以贝叶斯方法为基础的机器学习技术中,通常需要计算后验概率,然后通过最大后验概率(MAP)等方法进行参数推断和决策.然而,在很多时候,后验分布的形式可能非常复杂,这个时候寻找其中的最大后验估计或者对后验概率进行积分等计算往往非常困…
贝叶斯集锦(3):从MC.MC到MCMC 2013-07-31 23:03:39 #####一份草稿 贝叶斯计算基础 一.从MC.MC到MCMC 斯坦福统计学教授Persi Diaconis是一位传奇式的人物.Diaconis14岁就成了一名魔术师,为了看懂数学家Feller的概率论著作,24岁时进入大学读书.他向<科学美国人>投稿介绍他的洗牌方法,在<科学美国人>上常年开设数学游戏专栏的著名数学科普作家马丁•加德纳给他写了推荐信去哈佛大学,当时哈佛的统计学家Mosteller 正…
目录 一. 前言 1.1 本文动机 1.2 PBR知识体系 1.3 本文内容及特点 二. 初阶:PBR基本认知和应用 2.1 PBR的基本介绍 2.1.1 PBR概念 2.1.2 与物理渲染的差别 2.1.3 PBR的特征 2.2 PBR的衍变历史 2.2.1 Lambert(1760年) 2.2.2 Smith(1967年) 2.2.3 Phong(1973年) 2.2.4 Cook-Torrance(1982年) 2.2.5 Oren Nayarh(1994年) 2.2.6 Schlick(…
从随机过程到马尔科夫链蒙特卡洛方法 1. Introduction 第一次接触到 Markov Chain Monte Carlo (MCMC) 是在 theano 的 deep learning tutorial 里面讲解到的 RBM 用到了 Gibbs sampling,当时因为要赶着做项目,虽然一头雾水,但是也没没有时间仔细看.趁目前比较清闲,把 machine learning 里面的 sampling methods 理一理,发现内容还真不少,有些知识本人也是一知半解,所以这篇博客不可…
1     问题描述 LDA由Blei, David M..Ng, Andrew Y..Jordan于2003年提出,是一种主题模型,它可以将文档集中每篇文档的主题以概率分布的形式给出,从而通过分析一些文档抽取出它们的主题(分布)出来后,便可以根据主题(分布)进行主题聚类或文本分类.此外,一篇文档可以包含多个主题,文档中每一个词都由其中的一个主题生成. 人类是怎么生成文档的呢?LDA的这三位作者在原始论文中给了一个简单的例子.比如假设事先给定了这几个主题:Arts.Budgets.Childre…
前言 论文“Deep Boltzmann Machines”是Geoffrey Hinton和他的大牛学生Ruslan Salakhutdinov在论文“Reducing the Dimensionality of Data with Neural Networks”合作后的又一次联合发表的一篇有深远影响的论文,这篇论文第一次提出了DBM及其学习方法,对DBM原理.来源都做了详细讲解. 论文内容 前面介绍的都是BM原理及其训练,可以不用管它,下面直接从第3节开始…… 3.DBM 一般情况下,我们…
向量定义:x1 = c(1,2,3); x2 = c(1:100) 类型显示:mode(x1) 向量长度:length(x2) 向量元素显示:x1[c(1,2,3)] 多维向量:multi-dimensional vector:rbind(x1,x2); cbind(x1,x2) > x = c(1,2,3,4,5,6) > y = c(6,5,4,3,2,1) > z = rbind(x,y) > z [,1] [,2] [,3] [,4] [,5] [,6] x 1 2 3 4…
这段时间一直在看Metropolis Light Transport(简称mlt),现利用这篇博文把之前看资料已经coding上的一些体会记录下来. 1.Before MLT 在MLT算法被提出之前,最热的GI算法bidirectional path tracing虽然对比于basic path tracing已经有了效率上的明显提高,但是对于复杂场景的表现力仍显不足.那时候人们已经知道基于path的GI算法的效率关键在于找到有效路径的效率.先说有效路径是什么,简单地说就是从光源出发,在场景中反…
  虽然是概述,但内容并还是有些多,写上一篇PBR概念概述后,也在考虑怎么继续下去,最后还是觉得先多写一些东西再慢慢总结,所以还是尽量把这些年PBR相关的Paper精粹沉淀下来吧.     因为UE4开源的缘故,所以一开始还从它入手.相关的ppt和notebook可以从下面的链接下载,同期的黑色行动2(black op2)的PBR使用也是很有参考价值的,加上本文里也有OP2的IBL近似方法的介绍,如果没看过那也很值得下载的. http://blog.selfshadow.com/publicat…
[综述](MIT博士)林达华老师-"概率模型与计算机视觉” 距上一次邀请中国科学院的樊彬老师为我们撰写图像特征描述符方面的综述(http://www.sigvc.org/bbs/thread-165-1-1.html)之后,这次我们荣幸地邀请到美国麻省理工学院(MIT)博士林达华老师为我们撰写“概率模型与计算机视觉”的最新综述.这次我们特别增设了一个问答环节,林老师针对论坛师生提出的许多问题(如概率图模型与目前很热的深度神经网络的联系和区别)一一做了详细解答,并附在综述的后面. 林达华老师博士毕…
强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning) 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 数学符号看不懂的,先看看这里: 强化学习读书笔记 - 00 - 术语和数学符号 时序差分学习简话 时序差分学习结合了动态规划和蒙特卡洛方法,是强化学习的核心思想. 时序差分这个词不…
http://blog.csdn.net/pipisorry/article/details/51461878 概率图模型Graphical Models简介 完全通过代数计算来对更加复杂的模型进行建模和求解.然而,我们会发现,使用概率分布的图形表示进行分析很有好处.这种概率分布的图形表示被称为概率图模型( probabilistic graphical models ).这些模型提供了几个有用的性质:• 它们提供了一种简单的方式将概率模型的结构可视化,可以用于设计新的模型.• 通过观察图形,我…