fibonacci数列(二)_矩阵快速幂】的更多相关文章

描述 In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, - An alternative formula for the Fibonacci sequence is . Given…
fibonacci数列(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, - An alter…
Number Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 148003    Accepted Submission(s): 35976 Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A…
https://leetcode.com/problems/knight-dialer/ 在如下图的拨号键盘上,初始在键盘中任意位置,按照国际象棋中骑士(中国象棋中马)的走法走N-1步,能拨出多少种不同的号码. 解法一:动态规划,逆向搜索 class Solution { public: vector<vector<,},{,},{,},{,},{,,}, {},{,,},{,},{,},{,}}; ; int knightDialer(int N) { ; ; i<=; i++) {…
题目分析: 对于给出的n,求出斐波那契数列第n项的最后4为数,当n很大的时候,普通的递推会超时,这里介绍用矩阵快速幂解决当递推次数很大时的结果,这里矩阵已经给出,直接计算即可 #include<iostream> #include<stdio.h> using namespace std; ; struct mat{ ][]; }; mat operator * (mat a, mat b){ //重载乘号,同时将数据mod10000 mat ret; ; i < ; i++…
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5118 题解 这个题一看就是不可做的样子. 求斐波那契数列的第 \(n\) 项,\(n \leq 2^{10^{15}}\)??? 这样人怎么矩阵快速幂啊. 等等这个模数很神奇啊. \(1125899839733759\) 好像是一个质数,还以 \(9\) 结尾. 那么 \(5\) 对于 \(1125899839733759\) 一定有二次剩余咯. 那么根据 Fib 的通项公式 \[ f(n)…
题意:a1=0;a2=1;a3=2; a(n)=a(n-1)+a(n-2)+a(n-3);  求a(n) 思路:矩阵快速幂 #include<cstdio> #include<cstring> #define ll long long #define mod int(1e9+9) struct jz { ll num[][]; jz(){ memset(num, , sizeof(num)); } jz operator*(const jz&p)const { jz ans…
题意:给一个3*n的矩阵,要求用1*2的骨牌来填满,有多少种方案? 思路: 官网题解用的仍然是矩阵快速幂的方式.复杂度O(logn*83). 这样做需要构造一个23*23的矩阵,这个矩阵自乘n-1次,再来乘以初始矩阵init{0,0,0,0,0,0,0,1}后,变成矩阵ans{x,x,x,x,x,x,x,y},y就是答案了,而x不必管. 主要在这个矩阵的构造,假设棋盘是放竖直的(即n*3),那么考虑在第i行进行填放,需要考虑到第i-1行的所有可能的状态(注意i-2行必须是已经填满了,否则第i行无…
特殊矩阵的幂同样满足费马小定理. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define int long long ')) c=getchar();return c;} ?n:…
http://www.lydsy.com/JudgeOnline/problem.php?id=3231   和斐波那契一个道理在最后加一个求和即可 #include<cstdio> #include<cstring> #include<iostream> //using namespace std; ; ; long long modn; long long n,l,r; ]={}; struct mat{ ][]; mat(){ memset(e,,sizeof(e…