Fourier serie】的更多相关文章

你眼中看似落叶纷飞变化无常的世界,实际只是躺在上帝怀中一份早已谱好的乐章. 时域和频域就像观察一个物体一样,一个是主视图的,一个是侧视图. 1.在有限区间上由任意图形定义的任意函数都可以表示为单纯的正弦与余弦之和. 是由很多的正弦波叠加而成的. 不同与时域之中的函数变量是时间,频域中的变量是频率,所以时域中是按时间来排序的,频域中是按频率的大小来排序的. 而且频率中频率最低的那个波形的频率,规定它的频率为”1“.这样的话,为0的就代表直流成分,这只会抬高(或者降低)振幅. 频谱图的横坐标代表频率…
转载自https://zhuanlan.zhihu.com/p/19763358 作者:Heinrich 链接:https://zhuanlan.zhihu.com/p/19763358 来源:知乎 著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 作 者:韩 昊 知 乎:Heinrich 微 博:@花生油工人 知乎专栏:与时间无关的故事 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师. 转载的同学请保留上面这句话,谢谢.如果还能保留文章来源就更感激…
原文出处: 韩昊    # 作 者:韩 昊 # 知 乎:Heinrich # 微 博:@花生油工人 # 知乎专栏:与时间无关的故事 # 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师. # 转载的同学请保留上面这句话,谢谢.如果还能保留文章来源就更感激不尽了. 我保证这篇文章和你以前看过的所有文章都不同,这是 2012 年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者…… 这篇文章的核心思想就是: 要让读者在不看任何数学公式的情况…
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 在数字图像处理中,有两个经典的变换被广泛应用--傅里叶变换和霍夫变化.其中,傅里叶变换主要是将时间域上的信号转变为频率域上的信号,用来进行图像降噪,图像增强等处理,这一篇主要学习傅里叶变换,后面在学习霍夫变换. 下面学习一下傅里叶变换.有人说傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前…
dennis gabor 题目:从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换 本文是边学习边总结和摘抄各参考文献内容而成的,是一篇综述性入门文档,重点在于梳理傅里叶变换到伽柏变换再到小波变换的前因后果,对于一些概念但求多而全,所以可能会有些理解的不准确,后续计划分别再展开学习研究.通过本文可以了解到: 1)傅里叶变换的缺点:2)Gabor变换的概念及优缺点:3)什么是小波:4)小波变换的概念及优点. 一.前言         首先,我必须说一下,在此之前,…
更新:1 APR 2016 关于傅里叶级数参看数理方程:Fourier级数 Fourier变换: 对于满足Dirichlet条件的函数\(f(t)\)在其连续点处定义 \(F(\omega)=\int_{-\infty}^{+\infty}f(t)e^{-\mathrm{i}\omega t}dt\) 则\(f(t)\)可变换为 \(f(t)=\dfrac{1}{2\pi}\int_{-\infty}^{+\infty}F(\omega)e^{\mathrm{i}\omega t}d \omeg…
更新:25 MAR 2016 对于周期函数(周期为\(2\pi\))或定义在\([-\pi,\pi]\)上的函数\(f(x)\),可以展开为* \(\large f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_n\cos nx+b_n\sin nx)\quad n=0,1,2,…\) 则系数为 \(\large a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cdot\cos nx dx\) \(\large b_n…
此处推导参考(照抄) A First Course in Wavelets with Fourier Analysis Second Edition, Albert Boggess& Francis J.Narcowich 由傅立叶级数推广到傅立叶变换只需要一步——求一个极限. 当趋近于正无穷的时候,整个傅立叶级数逆变换(或者叫还原)就成为一个积分,此时正向求参数数列的式子天然是个积分,只不过此时随着趋近于正无穷,从数列变为函数,我们管它叫频谱,一般记作. 首先考虑定义在上的的傅立叶级数: 其中…
前言 傅立叶分析的作用是把一个函数变成一堆三角函数的和的形式,也就是分解.首先引入的是傅立叶级数,Fourier级数的作用是把函数变为可数无限个三角函数的和,而且这些三角函数的频率都是某个基频的整数倍.如果这个基频无限趋近于0,那么在极限的情况下这函数的参数(频率)就连续了,将连续时域函数映射到连续的频域函数的变换就是标准的傅立叶变换. 由于工程采集的信号大多都是离散的,把时域离散化以后不可能在得到连续的频域函数,所以在频域上也不连续了,这种离散时域序列到离散频域序列的变换称之为离散傅立叶变换(…
傅里叶级数 傅里叶在他的专著<热的解析理论>中提出,任何一个周期函数都可以表示为若干个正弦函数的和,即: \[f(t)=a_0+\sum_{n=1}^{\infty}(a_ncos(n\omega t)+b_nsin(n\omega t))\]其中\(\omega=\dfrac{2\pi}{T}\),\(T\)为函数的周期.\(a_n/b_n\)和\(n\)分别控制了正弦波的振幅与频率.这就是傅里叶级数的三角形式. 我们还可以用复指数形式1和积分2来表示傅里叶级数: \[ f(t)=\sum_…
本文旨在给出Fourier分析的几个动机. 目录 波动方程 热导方程 Lapalce变换 求和公式 表示论 特征理论 参考资料 波动方程 考虑一维的波动方程最简单的边值问题$$u(x,t), x\in [0,L], t\in [0,\infty)\qquad \begin{cases}\frac{\partial^2 u}{\partial t^2}=a^2\frac{\partial^2 u}{\partial x^2}\qquad (\textrm{波动方程})\\ u(x,0)=\varp…
\(2019.2.18upd:\) \(LINK\) 之前写的比较适合未接触FFT的人阅读--但是有几个地方出了错,大家可以找一下233 啊-本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一个人的自学能力锻炼到了极致\(qwq\) 好的,那我们就开始我们的飞飞兔\(FFT\)算法吧! 偷偷说一句,\(FFT\)的代码十分的短哦~并且如果你不喜欢看算法,你可以翻到最下面看心得哟! 写在前面 ·好多你不理解的地方在代码里就只有半行. ·三个引理中,只有消去引理跟算法的实现没有关系--消去引…
原理 短时傅里叶变换(Short Time Fourier Transform, STFT) 是一个用于语音信号处理的通用工具.它定义了一个非常有用的时间和频率分布类, 其指定了任意信号随时间和频率变化的复数幅度. 实际上,计算短时傅里叶变换的过程是把一个较长的时间信号分成相同长度的更短的段, 在每个更短的段上计算傅里叶变换, 即傅里叶频谱. 短时傅里叶变换通常的数学定义如下: 其中, DTFT (Decrete Time Fourier Transform) 为离散时间傅里叶变换.  其数学公…
Reprinted from: http://cns-alumni.bu.edu/~slehar/fourier/fourier.html An Intuitive Explanation of Fourier Theory<a href="http://www.statcounter.com/" target="_blank"><img src="76366945-1c60-49f1-ac31-ff97990c217e_files/co…
傅里叶叠层成像FP(Fourier Ptychographic Imaging) 傅里叶叠层显微术(FPM)是一种新型的计算显微成像技术,FPM与传统显微术照明方式不同,常采用可编程LED阵列进行不同角度照明,而LED灯珠发射光强与角度有关,随角度增大光强迅速减弱,不同角度照明光强不能保证一致,导致重建图像质量下降. 因此,在进行相位迭代反演计算过程中,需要对不同角度照明拍摄的图像进行光强校正. 高分辨率是光学显微技术发展至今不断追求的目标之一. 南京理工大学陈钱教授课题组从基本原理.实验系统与…
实验要求: Objective: To observe the Fourier spectrum by FFT and the average value of an image. Main requirements: Ability of programming with C, C++, or Matlab. Instruction manual: (a) Download Fig. 4.18(a) and compute its (centered) Fourier spectrum. (b…
实验要求: Objective: To further understand the well-known algorithm Fast Fourier Transform (FFT) and verify its effectiveness to calculate the discrete Fourier transform (DFT). Main requirements: Ability of programming with C, C++, or Matlab. Instruction…
K-DSN 深度堆叠网络 Random Features for Large-Scale Kernel Machines To accelerate the training of kernel machines, we propose to map the input data to a randomized low-dimensional feature space and then apply existing fast linear methods. Our randomized fea…
前言 快速傅里叶变换(\(\text{Fast Fourier Transform,FFT}\) )是一种能在\(O(n \log n)\)的时间内完成多项式乘法的算法,在\(OI\)中的应用很多,是多项式相关内容的基础.下面从头开始介绍\(\text{FFT}\). 前置技能:弧度制.三角函数.平面向量. 多项式 形如\(f(x)=a_0+a_1x+a_2x^2+...+a_nx^n\)的式子称为\(x\)的\(n\)次多项式.其中\(a_0,a_1,...,a_n\)称为多项式的系数. 系数…
设二次方程$$x^2+bx+c=0$$的两个根分别为 $x_1,x_2$.则$$(x-x_1)(x-x_2)=x^2+bx+c.$$因此$$\begin{cases}  x_1+x_2=-b\\x_1x_2=c\\\end{cases}$$进行离散 Fourier 变换,即$$\begin{pmatrix}  u_1\\v_1\\\end{pmatrix}=\begin{pmatrix}  \omega^{0}&\omega^{1}\\\omega^{0}&\omega^{2}\\\end…
目录 Fourier级数 函数的Fourier级数的展开 Fourier级数习题: Fourier级数 函数的Fourier级数的展开 Euler--Fourier公式 我们探讨这样一个问题: 假设\(f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}a_{k}coskt+b_{k}sinkt\) Euler--Fourier公式: \(a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx\) \(a_{n}=\frac{1}{…
[OI向]快速傅里叶变换(Fast Fourier Transform) FFT的作用 ​ 在学习一项算法之前,我们总该关心这个算法究竟是为了干什么. ​ (以下应用只针对OI) ​ 一句话:求多项式乘法(当然它的实际用处很多) ​ 设多项式 ​ \(A(x)=a_0+a_1x+a_2x^2+\ldots+a_nx^n\) ​ \(B(x)=b_0+b_1x+b_2x^2+\ldots+b_mx^m\) ​ 我们想求 \(F(x)=A(x)B(x)=\sum\limits_{i=0}^n\sum…
摘要:Fourier transform 是一个强大的概念,用于各种领域,从纯数学到音频工程甚至金融. 本文分享自华为云社区<使用 scipy.fft 进行Fourier Transform:Python 信号处理>,作者: Yuchuan. scipy.fft模块 傅立叶变换是许多应用中的重要工具,尤其是在科学计算和数据科学中.因此,SciPy 长期以来一直提供它的实现及其相关转换.最初,SciPy 提供了该scipy.fftpack模块,但后来他们更新了他们的实现并将其移到了scipy.f…
从傅里叶级数(Fourier series)到离散傅里叶变换(Discrete Fourier transform) 一. 傅里叶级数(FS) 首先从最直观的开始,我们有一个信号\(x(t)\)(满足Dirichelet条件),先假设它是周期的,为了研究它,我们使用级数将之展开,展开方法如下 \[x(t)=\sum_{k=0}^{\infty}a_ke^{jkw_0t}\tag{1} \] 现在问题就是如何求解\(a_k\).因为三角函数是正交系,即 \[\forall \theta_1 \ne…
最近在做Fourier Transform的内容,记录一下今天下午的成果. 本文代码全部自行编写,需要math and music项目完整工程可以在gayhub上获取.(现在还没弄完,就先不发了.) 概要 第一部分:     图像代码部分原理很直接,即极坐标参数方程的转化. 第二部分:   关于图像质点中心的问题,数学上需要使用复数与微积分的知识求出.     3b1b的原代码也是将质点的x-coordinate of center of mass图像直接用公式绘制.     但是本文使用的是暴…
我们大家都知道xor卷积有个很好的做法:FWT.FWT的变换形式是很好看的 // 说明一下Vector可以向量化运算,也可以当做数组来slice与concat Vector tf(A,2^n){ Vector A0=A.slice(0,2^n/2-1); Vector A1=A.slice(2^n/2,2^n-1); A0=tf(A0,2^n/2); A1=tf(A1,2^n/2); return concat(A0+A1,A0-A1); } Array itf(A,2^n){ Vector A…
湘潭邀请赛的一题,名字叫"超级FFT"最终暴力就行,还是思维不够灵活,要吸取教训. 由于每组数据总量只有1e5这个级别,和不超过1e6,故先预处理再暴力即可. #include<cstdio> #include<iostream> #include<cstdlib> #include<cstring> #include<string> #include<algorithm> #include<map>…
写在前面的.. 感觉自己是应该学点新东西了.. 所以就挖个大坑,去学FFT了.. FFT是个啥? 挖个大坑,以后再补.. 推荐去看黑书<算法导论>,讲的很详细 例题选讲 1.UOJ #34. 多项式乘法 这是FFT最裸的题目了 FFT就是拿来求这个东西的 没啥好讲的,把板子贴一下吧.. #include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> #inc…
题意:给一个n×n的矩阵A,求S = A + A2 + A3 + … + Ak. 解法:从式子中可得递推式S(n) = S(n - 1) + An,An = An-1×A,可得矩阵递推式 [S(n), An] = [S(n - 1), An-1] * [1 0] [A A]    <-orz画不出二维矩阵了 初始状态S(0)为0矩阵,A0为单位矩阵,跑一下矩阵快速幂…… 矩阵运算写屎了……调了一下午bugQAQ……矩阵套矩阵什么的好讨厌啊…… 代码: #include<stdio.h>…
分析:因为加起来不超过1e6,所以最多有1000+个不同的数 做法:离散化搞就好了 #include <cstdio> #include <iostream> #include <ctime> #include <vector> #include <cmath> #include <map> #include <queue> #include <algorithm> #include <cstring&g…