#LOF算法】的更多相关文章

a.每个数据点,计算它与其他点的距离 b.找到它的K近邻,计算LOF得分 clf=LocalOutlierFactor(n_neighbors=20,algorithm='auto',contamination=0.1,n_jobs=-1,p=2) 参数含义 ●n_neighbors=20:即LOF算法中的k的值,检测的邻域点个数超过样本数则使用所有的样本进行检测 ●algorithm = 'auto':使用的求解算法,使用默认值即可 ●contamination = 0.1:范围为 (0, 0…
http://blog.csdn.net/wangyibo0201/article/details/51705966 在数据挖掘方面,经常需要在做特征工程和模型训练之前对数据进行清洗,剔除无效数据和异常数据.异常检测也是数据挖掘的一个方向,用于反作弊.伪基站.金融诈骗等领域.  异常检测方法,针对不同的数据形式,有不同的实现方法.常用的有基于分布的方法,在上.下α分位点之外的值认为是异常值(例如图1),对于属性值常用此类方法.基于距离的方法,适用于二维或高维坐标体系内异常点的判别,例如二维平面坐…
完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote 在数据挖掘方面,经常需要在做特征工程和模型训练之前对数据进行清洗,剔除无效数据和异常数据.异常检测也是数据挖掘的一个方向,用于反作弊,伪基站,金融欺诈等领域. 在之前已经学习了异常检测算法One Class SVM和 isolation  Forest算法,博文如下: Python机器学习笔记:异常点检测算法--One…
局部异常因子算法-Local Outlier Factor(LOF)在数据挖掘方面,经常需要在做特征工程和模型训练之前对数据进行清洗,剔除无效数据和异常数据.异常检测也是数据挖掘的一个方向,用于反作弊.伪基站.金融诈骗等领域. 异常检测方法,针对不同的数据形式,有不同的实现方法.常用的有基于分布的方法,在上.下α分位点之外的值认为是异常值(例如图1),对于属性值常用此类方法.基于距离的方法,适用于二维或高维坐标体系内异常点的判别,例如二维平面坐标或经纬度空间坐标下异常点识别,可用此类方法. 这次…
大家接触的第一个聚类方法,十有八九都是K-means聚类啦.该算法十分容易理解,也很容易实现.其实几乎所有的机器学习和数据挖掘算法都有其优点和缺点.那么K-means的缺点是什么呢? 总结为下: (1)对于离群点和孤立点敏感: (2)k值选择; (3)初始聚类中心的选择: (4)只能发现球状簇. 对于这4点呢的原因,读者可以自行思考下,不难理解.针对上述四个缺点,依次介绍改进措施. 改进1 首先针对(1),对于离群点和孤立点敏感,如何解决?笔者在前面的一篇博客中,提到过离群点检测的LOF算法,通…
资源下载 #本文PDF版下载 C#下实现的K-Means优化[1]-「离群点检测」 前言 在上一篇博文中,我和大家分享了「C # 下实现的多维基础K-MEANS聚类」的[C#下实现的基础K-MEANS多维聚类 - xlxw - 博客园].在上篇文章中使用的是最传统的K-Means均值聚类方法,在上文中只是介绍了有一些能优化的方法但是没有具体的讲怎么去优化.所以在这篇博文中,我会和大家分享.我学到的关于我们前面说的聚类前的预处理-离群点的检测. 离群点的检测方法 离群点的检测是数据挖掘中很重要的部…
资源下载 #本文PDF版下载 C#下实现的基础K-MEANS多维聚类PDF #本文代码下载 基于K-Means的成绩聚类程序 前言 最近由于上C # 课的时候,老师提到了-我们的课程成绩由几个部分组成.分别是「最终作品展示」「小组合作聊天记录评分」「组内成员匿名互评」「报告书评分」这四项综合评价.老师希望我能够通过这四个项目对所有同学进行聚类,然后根据离每簇的中心距离来评价最终的分数.由于我没有接触过这方面的算法,所以就选了实现较为方便并且直观的聚类方法K-MEANS.所以下文中就会对我这次学习…
异常值检测 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序: 1. LX终端(LXTerminal): Linux命令行终端,打开后会进入Bash环境,可以使用Linux命令2. GVim:非常好用的编辑器,最简单的用法可以参考课程[Vim编辑器](http://www.shiyanlou.com/courses/2)3. R:在命令行输入‘R’进入交互式环…
本文转载自cador<使用R语言进行异常检测> 本文结合R语言,展示了异常检测的案例,主要内容如下: (1)单变量的异常检测 (2)使用LOF(local outlier factor,局部异常因子)进行异常检测 (3)通过聚类进行异常检测 (4)对时间序列进行异常检测 一.单变量异常检测 本部分展示了一个单变量异常检测的例子,并且演示了如何将这种方法应用在多元数据上.在该例中,单变量异常检测通过boxplot.stats()函数实现,并且返回产生箱线图的统计量.在返回的结果中,有一个部分是o…
novelty detection:当训练数据中没有离群点,我们的目标是用训练好的模型去检测另外发现的新样本 outlier  dection:当训练数据中包含离群点,模型训练时要匹配训练数据的中心样本,忽视训练样本中的其他异常点. 一.outlier  dection 1.孤立森林(Isolation Forest) iForest适用于连续数据(Continuous numerical data)的异常检测,将异常定义为“容易被孤立的离群点(more  likely to be separa…