EM算法:入门案例】的更多相关文章

EM算法 各类估计 最大似然估计 Maximum Likelihood Estimation,最大似然估计,即利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值的计算过程. 直白来讲,就是给定了一定的数据,假定知道数据是从某种分布中随机抽取出来的,但是不知道这个分布具体的参数值,即:模型已知,参数未知,而MLE就是用来估计模型的参数. MLE的目标是找出一组参数(模型中的参数),使得模型产出观察数据的概率最大. \[arg~max_θP(X;θ) \] MLE求解过程 写出似然函数…
概率分布 4种实验结果 \(E_1\) \(E_2\) \(E_3\) \(E_4\) 记录它们发生的次数 \(y_1\) \(y_2\) \(y_3\) \(y_4\) 记录次数结果 125 18 20 34 4种结果发生的概率 \(\frac{1}{2}-\frac{\theta}{4}\) \(\frac{1}{4}-\frac{\theta}{4}\) \(\frac{1}{4}+\frac{\theta}{4}\) \(\frac{\theta}{4}\) 求\(\theta\)的估计…
你所不知道的 CSS 阴影技巧与细节   关于 CSS 阴影,之前已经有写过一篇,box-shadow 与 filter:drop-shadow 详解及奇技淫巧,介绍了一些关于 box-shadow 的用法. 最近一个新的项目,CSS-Inspiration,挖掘了其他很多有关 CSS 阴影的点子,是之前的文章没有覆盖到的新内容,而且有一些很有意思,遂打算再起一篇. 本文的题目是 CSS 阴影技巧与细节.CSS 阴影,却不一定是 box-shadow 与 filter:drop-shadow,为…
1 极大似然估计     假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成绩的分布     欲求在抽样X时,最优的μ和σ2参数估计,虽然模型的原型已知,但不同的参数对应着不同的学生成绩分布,其中一种最简单有效的参数估计方法就是估计的参数在目前抽样的数据上表现最好,即使得f(X|μ,σ2)的联合概率最大,这就是极大似然估计,常用L(μ,σ2|X)表示,满足公式(1)所示的关系.在…
1 贝叶斯方法 长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大.而且概率虽然未知,但最起码是一个确定的值.比如如果问那时的人们一个问题:“有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率是多少?”他们会想都不用想,会立马告诉你,取出白球的概率就是1/2,要么取到白球,要么取不到白球,即θ只能有一个值,而且不论你取了多少次,取得白球的概率θ始终都是1/2,即不随观察结果X 的变化而变…
将学习EM算法过程中看到的好的资料汇总在这里,供以后查询.也供大家參考. 1. 这是我学习EM算法最先看的优秀的入门文章,讲的比較通俗易懂,并且举了样例来说明当中的原理.不错! http://blog.csdn.net/zouxy09/article/details/8537620 还有这个,跟上一篇几乎相同,略微有些深入.说明了EM过程收敛的原因. http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html 另外,这篇文章中…
本文转载自:https://www.cnblogs.com/zhoulujun/p/8893393.html 1 贝叶斯方法 长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大.而且概率虽然未知,但最起码是一个确定的值.比如如果问那时的人们一个问题:“有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率是多少?”他们会想都不用想,会立马告诉你,取出白球的概率就是1/2,要么取到白球,要么取…
1.什么是JWT? JWT全称JSON Web Token.是为了在网络应用环境键传递声明而执行的一种基于JSON的开放标准. 2.JWT的使用场景? 授权:一旦用户登录,每个后续请求将包括JWT,允许用户访问该令牌允许的路由,服务和资源.单点登录是一种在广泛使用JWT的功能,因为它的开销很小,并且能够在不同的域中轻松使用. 信息交换:JSON Web令牌是在各方之间安全传输信息的好方法.因为JWT可以签名 - 例如,使用公钥/私钥对 - 您可以确定发件人是他们所说的人.此外,由于使用标头和有效…
前篇已经对EM过程,举了扔硬币和高斯分布等案例来直观认识了, 目标是参数估计, 分为 E-step 和 M-step, 不断循环, 直到收敛则求出了近似的估计参数, 不多说了, 本篇不说栗子, 直接来推导一波. Jensen 不等式 在满足: 一个 concave 函数, 即 形状为 "\(\bigcap\)" 的函数 \(f(x)\) \(\lambda_j \ge 0\) \(\sum \limits _j \lambda_j = 1\) 类似于随机变量的分布 的前提条件下, 则有…
目的: shiro简介 Shiro入门案例 Shiro与web容器的集成 shiro简介(中文官网:https://www.w3cschool.cn/shiro/andc1if0.html) 1.什么是shiro? shiro是apache的一个开源框架,是一个权限管理的框架,实现 用户认证.用户授权. spring中有spring security (原名Acegi),是一个权限框架,它和spring依赖过于紧密,没有shiro使用简单. shiro不依赖于spring,shiro不仅可以实现…