传送门 显然是可以树形 $dp$ 的 对每个节点维护以下 $5$ 个东西 $1.$ 从当前节点出发往下的链的最大贡献 $2.$ 节点子树内不经过本身的路径最大贡献 $3.$ 节点子树内经过本身的路径的最大贡献 $4.$ 从当前节点出发的一条链加上经过这条链的路径构成的图形的最大贡献 $5.$ 从当前节点出发的一条链加上不经过这条链的路径构成的图形的最大贡献 然后就可以大力讨论转移,算答案的时候也同样大力讨论,细节过多,过于恶心 注意上面那些东西的贡献都只考虑在子树内,如果当前节点不是根那么对答案…
目录 2018.3.18 Test T1 BZOJ.4868.[六省联考2017]期末考试 T2 T3 BZOJ.4870.[六省联考2017]组合数问题(DP 矩阵快速幂) 总结 考试代码 T1 T2 T3 2018.3.18 Test 时间:3.5h 得分:太zz不写了(T3 60暴力分就我没看..) BZOJ总题目链接 LOJ总题目链接 T1 BZOJ.4868.[六省联考2017]期末考试 题目链接 /* 所有人都只与最大的bi有关系啊! 所以可以枚举bi,现在就是计算选在bi这天 所有…
P3747 [六省联考2017]相逢是问候 题目描述 \(\text {Informatik verbindet dich und mich.}\) 信息将你我连结. \(B\) 君希望以维护一个长度为 \(n\) 的数组,这个数组的下标为从 \(1\) 到 \(n\) 的正整数. 一共有 \(m\) 个操作,可以分为两种: \(0\) \(l\) \(r\) 表示将第 \(l\) 个到第 \(r\) 个数\(( a_l,a_{l+1},...a_r )\)中的每一个数\(a_i\)替换为 \(…
[BZOJ4873][六省联考2017]寿司餐厅(网络流) 题面 BZOJ 洛谷 题解 很有意思的题目 首先看到答案的计算方法,就很明显的感觉到是一个最大权闭合子图. 然后只需要考虑怎么构图就行了. 首先把那个奇奇怪怪的什么\(mx^2+cx\),首先\(cx\)可以拆到每个地方计算,然后\(mx^2\)显然就是只要有这种被买到就要产生贡献,那么直接给每种寿司新建一个贡献然后连\(mx^2\)的边就行了. 然后考虑选择了区间的贡献,如果选择了区间\([l,r]\),就让\([l,r]\)向\([…
[BZOJ4868][六省联考2017]期末考试(贪心) 题面 BZOJ 洛谷 题解 显然最终的答案之和最后一个公布成绩的课程相关. 枚举最后一天的日期,那么维护一下前面有多少天可以向后移,后面总共需要往前移多少天,扫一遍贪心就好了. #include<iostream> #include<cstdio> using namespace std; #define ll long long #define MAX 100100 inline int read() { int x=0;…
目录 2018.3.27 Test 总结 T1 T2 T3 BZOJ.4873.[六省联考2017]寿司餐厅(最小割ISAP 最大权闭合子图) 考试代码 T1 T2 T3 2018.3.27 Test 时间:7:30~11:50 期望得分:(50+)+0+20=70 实际得分:52+5+20=77 总结 T1 看错一点题,暴力也废了很长时间. T2 期望DP没写过不敢写,然而50分和期望没有关系,贪心什么的就行.没细看. T3 建图死活建不出来,没想明白费用流还费了不少时间写费用流. BZOJ总…
P3746 [六省联考2017]组合数问题 \(dp_{i,j}\)表示前\(i\)个物品,取的物品模\(k\)等于\(r\),则\(dp_{i,j}=dp_{i-1,(j-1+k)\%k}+dp_{i-1,j}\) \(dp_{i,0},dp_{i,1},dp_{i,2}.....dp_{i,k-1}\) \(\Longrightarrow\) \(dp_{i+1,0},dp_{i+1,1},dp_{i+1,2}.....dp_{i+1,k-1}\) 仔细想想,你能构造出矩阵的 #includ…
P3745 [六省联考2017]期末考试 题目描述 有 \(n\) 位同学,每位同学都参加了全部的 \(m\) 门课程的期末考试,都在焦急的等待成绩的公布. 第 \(i\) 位同学希望在第 \(t_i\)​ 天或之前得知所有课程的成绩.如果在第 \(t_i\) 天,有至少一门课程的成绩没有公布,他就会等待最后公布成绩的课程公布成绩,每等待一天就会产生 \(C\) 不愉快度. 对于第 \(i\) 门课程,按照原本的计划,会在第 \(b_i\)​ 天公布成绩. 有如下两种操作可以调整公布成绩的时间:…
4871: [Shoi2017]摧毁"树状图" 题意:一颗无向树,选两条边不重复的路径,删去选择的点和路径剩下一些cc,求最多cc数. update 5.1 : 刚刚发现bzoj上这个做法被hack了....以后再想一下别的做法吧 一开始以为这是三合一,写了x=2和x=1. 后来才明白...人家给出的本来就是最优...你自己再求也无所谓 x=0的树形DP没有想出来,感觉很不好处理. 题解是对边进行树形DP 对于有向边\(p:(u,v)\),\(f(p), g(p), d(p)\)分别表…
4871: [Shoi2017]摧毁“树状图” Time Limit: 25 Sec  Memory Limit: 512 MBSubmit: 53  Solved: 9[Submit][Status][Discuss] Description 自从上次神刀手帮助蚯蚓国增添了上千万人口(蚯口?),蚯蚓国发展得越来越繁荣了!最近,他们在地下发现了 一些神奇的纸张,经过仔细研究,居然是D国X市的超级计算机设计图纸!这台计算机叫做‘树状图’,由n个计算 节点与n1条可以双向通信的网线连接而成,所有计算…
4869: [Shoi2017]相逢是问候 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1313  Solved: 471[Submit][Status][Discuss] Description Informatikverbindetdichundmich. 信息将你我连结.B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以 分为两种:0 l r表示将第l个到第r个数(al,al+1,...,ar)中的每…
4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为 从 1 到 n 的正整数.每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,游戏…
http://www.lydsy.com/JudgeOnline/problem.php?id=4872 一种最优解是 从大到小灯有亮的就灭掉 最优解是唯一的,且关灯的顺序没有影响 最优解 对每个开关至多操作1次,(连带着的灯的亮灭改变不算) 设最优解 需要操作cnt次,那么就有cnt盏灯是正确的选择 设 f[i] 表示 有i种正确的选择  变为 有i-1种正确的选择 的 期望次数 那么在n盏灯中,有i盏灯操作1次 就可以 减少一次正确选择 有n-i盏灯是错误的选择,选了它还要把它还原,还原它也…
http://www.lydsy.com/JudgeOnline/problem.php?id=4873 选a必选b,a依赖于b 最大权闭合子图模型 构图: 1.源点 向 正美味度区间 连 流量为 美味度 的边 2.负美味度区间 向 汇点 连 流量为 美味度的绝对值 的边 3.区间[i,j] 向 区间[i+1,j].区间[i,j-1] 连 流量为 inf 的边 4.区间[i,i] 向 寿司i 连 流量为 inf 的边 5.寿司i 向 汇点 连 流量为 寿司代号 的边 6.寿司i 向 它的代号 连…
4873: [Shoi2017]寿司餐厅 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 490  Solved: 350[Submit][Status][Discuss] Description Kiana最近喜欢到一家非常美味的寿司餐厅用餐.每天晚上,这家餐厅都会按顺序提供n种寿司,第i种寿司有一个 代号ai和美味度di,i,不同种类的寿司有可能使用相同的代号.每种寿司的份数都是无限的,Kiana也可以无限次 取寿司来吃,但每种寿司每次只能取一…
4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 516  Solved: 342[Submit][Status][Discuss] Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为 从 1 到 n 的正整数.每个灯有两个状态亮和灭,我们用 1 来表…
4868: [Shoi2017]期末考试 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 964  Solved: 439[Submit][Status][Discuss] Description 有n位同学,每位同学都参加了全部的m门课程的期末考试,都在焦急的等待成绩的公布.第i位同学希望在第ti天 或之前得知所.有.课程的成绩.如果在第ti天,有至少一门课程的成绩没有公布,他就会等待最后公布成绩的课程 公布成绩,每等待一天就会产生C不愉快度.对…
4870: [Shoi2017]组合数问题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 748  Solved: 398[Submit][Status][Discuss] Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 Output 一行一个整数代表答案. Sample Input 2 10007…
由扩展欧拉定理,a^(a^(a^(……^x)))%p中x作为指数的模数应该是φ(φ(φ(φ(……p)))),而p取log次φ就会变为1,也即每个位置一旦被修改一定次数后就会变为定值.线段树维护区间剩余修改次数的最大值,暴力修改即可. 可以预处理出每个位置进行k次操作后的值.直接计算是log^3的,会被卡常.考虑类似bsgs的分块,将指数拆成<10000和10000m两部分,预处理后即可O(1)查询,避免每次快速幂. 注意当指数<φ(p)不能加φ(p). #include<iostream…
http://www.lydsy.com/JudgeOnline/problem.php?id=4869 欧拉降幂+线段树,每个数最多降log次,模数就会降为1 #include<cmath> #include<cstdio> #include<iostream> using namespace std; #define N 50001 int n,m,p,c; int a[N]; ]; ]; ],phi[]; int ans; bool flag; void read…
题意 如果对一个数操作\(k\)次,那么这个数会变成\(c^{c^{...^{a_i}}}\),其中\(c\)有\(k\)个. 根据P4139 上帝与集合的正确用法这道题,我们可以知道一个数不断变为自己的欧拉函数,大约\(log\)次就会变成1,而任何数模\(1\)都是\(0\),于是我们可以用势能线段树解决. 因为模数不变,因此我们可以预处理所有\(\varphi(\varphi(...\varphi(p)...))\),之后在线段树上记录操作次数. 这样是三个\(log\)的,因为还要快速幂…
传送门 题解 扩展欧拉定理. 线段树维护,已经全改到底了的节点就不管,不然暴力修改下去. //Achen #include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<vector> #include<cstdio> #include<queue> #include<cmath> +; #define Fo…
BZOJ Luogu sol 首先发现肯定有解,又因为每个位置至多操作一次,所以最优解一定是在\([0,n]\)之间 有一种可以在\(O(\sum_{i=1}^{n}\lfloor\frac{n}{i}\rfloor)\)复杂度求最优解的方法. 只要枚举这个数的倍数判断被操作了几次就行了. 如果最优步数小于等于k直接输出最优步数\(*n!\) 否则,我们设\(f_i\)表示当前最优步数是\(i\)时的期望完成步数 考虑到这时所有位置已经没有区别了(只有需要操作的和不需要操作的两种,没有顺序区别)…
题目分析: 构造f[nk][r]表示题目中要求的东西.容易发现递推公式f[nk][r]=f[nk-1][r]+f[nk-1][(r-1)%k].矩阵快速幂可以优化,时间复杂度O(k^3logn). 代码: #include<bits/stdc++.h> using namespace std; int n,p,k,r; ][]; ][]; ][]; void fast_pow(long long pw){ ) { ;i<k;i++) ;j<k;j++) g[i][j] = mat[…
http://www.lydsy.com/JudgeOnline/problem.php?id=4870 80分暴力打的好爽 \(^o^)/~ 预处理杨辉三角 令m=n*k 要求满足m&x==x ,x<=m, x%k==r 的x的个数 结论:若n&m==m,则C(n,m)为奇数,否则为偶数 枚举m的子集,判断是否%k==r 时间复杂度:O(m的位子集个数),即O(2^(m的二进制中1的个数))极限是O(n*k) 杨辉三角第i行的和=2^i,即 那么用2^(nk) 减去 前面不用的C…
http://www.lydsy.com/JudgeOnline/problem.php?id=4868 假设 最晚出成绩的是第i天 预处理 cnt[i] 表示 有多少个学生 期望出成绩的那一天 <i sum[i] 表示 对应cnt[i] 那些学生 的 t 之和 比如  i=5,有4个学生 期望1 2 4 8 出成绩,那么 sum[5]=1+2+4=7,cnt[5]=3 假设 最晚出成绩的是第i天 学生的不愉悦度= (cnt[i]*i-sum[i])*C 类似的方法,算出 当前i下,能提前 某些…
题目传送门:这里是萌萌哒传送门(>,<) 啊♀,据说这题有个完全贪心的做法,但是要维护太多东西好麻烦的(>,<),于是就来口胡一发三分的做法. 思路很简单,假设我指定了一个x,要求通过调整,所有的成绩都最迟在第x天出. 调整到第x天的代价是很容易通过贪心计算出来的啦,复杂度线性. 然后我们考虑从大到小枚举x,每次计算出代价之后更新答案. 再然后我们大胆猜想这是一个单峰函数! 既然都单峰啦那直接三分就好啦(>,<). 实际上我不知道它是不是真的是单峰函数...但是就AC了…
...........真的神状态了,没办法去想的状态................... 考试的时候选择$50$分贪心+$15$分状压吧,别的点就放弃算了........ 令$f[i]$表示从最小步数为$i$时走到最小步数为$i - 1$的状态的期望步数 (所以题目中的$k$实际上是个提示...........................) 那么当$i > k$时,有$f[i] = \frac{i}{n} + \frac{n - i}{n} * (1 + f[i] + f[i + 1])$…
表示每次看见期望的题就很懵逼... 但是这题感觉还是值得一做,有可借鉴之处 要是下面这段文字格式不一样的话(虽然好像的确不一样,我也不知道为什么,是直接从代码里面复制出来的,因为我一般都是习惯在代码里面敲注释... 还是比较妙的. 首先有一个贪心的最优策略,由于每盏灯最多开一次(两次就相当于没开),并且都只能影响它以及它之前的, 也就是只能被后面的影响,所以从后往前遍历,如果一盏灯还是开的话,那我们就必须关掉它, 不然就没人能关掉它了,于是这样我们可以得到对于初始状态的最优操作次数, 这个时候,…
\(\color{#0066ff}{ 题目描述 }\) Kiana 最近喜欢到一家非常美味的寿司餐厅用餐. 每天晚上,这家餐厅都会按顺序提供 \(n\) 种寿司,第 \(i\) 种寿司有一个代号 \(a_i\) 和美味度 \(d_{i, i}\) ,不同种类的寿司有可能使用相同的代号.每种寿司的份数都是无限的,\(Kiana\) 也可以无限次取寿司来吃,但每种寿司每次只能取一份,且每次取走的寿司必须是按餐厅提供寿司的顺序连续的一段,即 \(Kiana\) 可以一次取走第 \(1, 2\) 种寿司…